Roll No.

Total No. of Printed Pages : 4

Code No. : B02-103

Second Semester Online Examination, May-June, 2022

M.Sc. MATHEMATICS

Paper I

ADVANCED ABSTRACT ALGEBRA II

Time : Three Hours]

[Maximum Marks : 80

- *Note* : Part A and B of each equation in each unit consist of very short answer type questions which are to be answered in one or two sentences.
 - Part C (Short answer type) and D (Long answer type) of each question should be answered within the word limit 200-250 and 400-450 words.

Unit-I

	Or	
	space always admits a finite basis.	4
	(C) Show that a non-zero finitely generated	vector
	(B) Define primary modules with an example.	2
1.	(A) Define basis with an example.	2

Show that every submodule of a noetherian module is finitely generated.

Code No. : B02–103

(D) Define nil ideal, nilpotent ideal and show that any nilpotent left ideal in an artinian ring is always nilpotent,.

Or

State and prove Hilbert Basis theorem.

Unit-II

- **2.** (A) Define regular transformation. 2
 - (B) If $T_1, T_2 \in \text{Hom}(U, V)$ then show that $(T_1 + T_2) \in \text{Hom}(U, V)$. 2
 - (C) Is T $(\alpha, \beta) = (\alpha + \beta, \alpha \beta, \beta), \forall (\alpha, \beta) \in V_2(R)$ a linear transformation ? 4

Or

Find the matrix of T relative to the basis $\{\alpha_1, \alpha_2\}$ where $\alpha_1 = (1, 1)$, $\alpha_2 = (-1, 0)$ and T (x, y) = (4x - xy, 2x + y).

(D) Show that rank (T) + nullity (T) = dim V, where T : U \rightarrow V. 12

Or

Let V be the vector space and $T \in A(V)$ is defined as $(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3) T = \alpha_1 + 2\alpha_2 x + 3\alpha_3 x^2$. Compute the matrix of T is the basis A, 1 + x, $1 + x^2$, $1 + x^3$ and find CAC⁻¹.

Code No. : B02–103 Unit-III

3.	(A) Define companian matrix with example.	2
	(B) Define trace of a matrix with example.	2
	(C) Determine all invariant subspaces of $A = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ on R^2 .	$\begin{pmatrix} -5 \\ -2 \end{pmatrix}$

Or

Show that similar matrices have the same eigen values.

(D) Find the canonical nilpotent forms of the following

matrix
$$\begin{bmatrix} -2 & 1 & 1 \\ -3 & 1 & 2 \\ 2 & -1 & -1 \end{bmatrix}$$
. 12
Or

If dim V = n and if $T \in A(V)$ has all its characteristics roots in F then show that T satisfies a polynomial of degree *n* over F.

Unit-IV

4. (A) Define row module of a matrix with an example.

2

[3] P. T. O.

(B) Find rational canonical form of
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -2 & 2 & 1 & 0 \\ 4 & 2 & 3 & 0 \end{bmatrix}$$
.

(C) Show that by an example that not every matrix is similar to a diagonal matrix.

Or

Show that T or M is a submodule of M.

- (D) Suppose :
 - (i) V is a finite dimensional vector space over a field F.
 - (ii) $T \in \text{Hom}_{F}(V, V)$. (iii) f(x) = g(x) h(x) is F[x]such that [g(x), h(x)] = 1. Show that f(T) = 0 if and only if $V = \ker g(T) \oplus \ker h(T)$.

Or

Describe the process of diagonalization of A, $m \times n$ matrix over P | D R such that A = diag $(a_1, a_2, \dots, a_r, 0, 0 \dots, 0) a_i | a_{i+1}$. $\square \square \square$ [4] 4/25