•	Boll No		Total No. of Section : 03			
0			Total No. of Printed Pages : 03			
0	Э	Code No. : B-401(A	.)			
0	0	Annual Examination -	· 2017			
0	2	BCA-I				
0		(BCA-101)				
		Paper - I				
	DISCRETE MATHEMATICS					
)		Max.Marks : 50			
) Time	: 3 Hrs.	Min Marks : 20			
•	Note : Section 'A' is very short answer type, containing 10 questions, is compulsory. Section 'B' consists of short answer type					
	Э	questions and Section 'C' consist	s of long answer type			
)	questions. Section 'A' has to be solved	l first.			
-	(Section-'A')					
)	(Very short answer type questions	. Answer in one or two			
	Э	lines.)	(1x10=10)			
	Q.1	Define logical equivalence.				
	Q.2	What is open statement? What is principle of duality?				
	0.4	Write involution law.				
	Q.5	What is conjunctive normal form?				
•	Q.6	Define Boolean function.				
0	Q.7	What is equivalence relation?				
	Q.8	Define composition of mapping.				
	JQ.9	What is null graph?				
•) Q.10	Denne spanng tree.				
0	Э	(Section-'B')				
	Э	Short answer type questions	(3x5=15)			
	⊃ ^{Q.1}	Prove that $\sim B \land (A \Rightarrow B) \Rightarrow \sim A$, is a	tautology.			
)	Э		РТО			
)	Э		r.1.0.			

-

. 1.2

			Code No. 1 D (01(4))	\bigcirc		
		(2)	Code No. : B-401(A)	•		
		OR	0	•		
	Write a negation	of the following :	0	C		
	i) $\forall x (x \neq 1, x)$	≠2)		0		
	ii) $\forall x (x \neq 0)$:	$\Rightarrow (x^2 > 0)$		Q		
	iii) $\exists x (x^2 = 1 a)$	and $x^2 - 2x + 3 = 0$)		6		
Q.2	For any element	a of Boolean algeb	ra B, prove that $a+1=1$.	C		
	In any Boolean al	gebra prove that :	0	0		
0.0		·c 0	õ			
Q.3	Draw a simple ci	reuit for switching	function.	C		
	$F(x,y) = x \cdot y' + x \cdot y$ OR					
	Prove that the complete conjunctive normal form in two					
	variables is ident	0	C			
Q.4	Draw a tree-net f	or the function $a \cdot l$ OR	$b' + a' \cdot b + a' \cdot b' + a \cdot b$.	0		
	Write types of Bo	h example.	C			
Q.5	Express the follo the smallest poss	wing functions in the ible number of var	disjunctive normal form in iables :	0		
	f(x,	$(y,z) = \left[(x+y') (x \cdot y) \right]$	y'z)']'	0		
		OR	0	8		
	Draw the logic ci	rcuit for the follow	ving Boolean expression :	0		
		(x+y)z(x'+y'+z))	0		
	(Section-'C')					
	Long answer ty	pe questions	(5x5=25)	0		
Q.1	Prove that : $[(P/$	$(\land R)$ is a tautology.	0			
			C C			
			•	0		
			0)		

(3)Code No. : B-401(A) OR Prove that following statement is a contradiction : $\left[(P \land r) \lor (q \land \neg r) \right] \Leftrightarrow \left[(\neg P \land r) \lor (\neg q \land \neg r) \right]$ Q.2 Draw the simple circuit for the following switching function : x.y.z + (x + y).(x + z)OR In a Boolean algebra B show that if a + b = a + c and $a \cdot b = a \cdot c$ them b = c. State and prove Boole's expansion theorem. Q.3 OR Convert the following function in conjunctive normal form: $f(x, y, z) = (x + y + z) \cdot (x \cdot y + x' \cdot z)'$ If I is the set of non-zero integers and a relation defined by xRyQ.4 if $x^y = y^x$ where $x, y \in I$, then prove that R is an equivalence) relation. OR If a mapping $f: Q \to Q$ is defined by $f(x) = 2x + 3, x \in Q$, where) Q is the set of rational numbers. Then prove that the mapping is one-one onto. Also find f^{-1} . > Q.5 Prove that a tree with n vertices has (n-1) edges. OR If a graph G = (V, E) is defined by : $V = \{v_1, v_2, v_3\}, E = \{(v_1, v_2), (v_2, v_3), (v_1, v_3)\}$ |V| = 3, |E| = 30 then find the adjacency matrices and the incidence of the graph G.

----X----