0),			
0)	153.00	ii,	
))	Roll No	Total No. of Questions : 0:	
0)		Total No. of Printed Pages: 0.	
))	Code No.: B-420(B) Annual Examination - 2017 Class BCA-III BCA-301 Paper- I		
))			
0)			
0)			
))	CALCULUS & GEOMETRY		
0)	CALCULUS &	Max.Marks: 50	
0)	Time: 3 Hrs.	Min.Marks : 20	
0)	Note : Attempt any two parts from each unit. All questions carry equal marks.		
0)	Unit-I Q-1.(a)Let $f:[a,b] \to R$ be a bounded function on $[a,b]$. Prove that $f \in R[a,b]$ iff for every $\in > 0$, there exists a partition P of $[a,b]$ s.t. U (p, f) -L $(p, f) < \in$ (b) Let $f(x) = x^2$ on $[0, a]$, $a > 0$ show that $f \in R[0, a]$ and		
0)			
)			
0)			
)				
0)			
0)	$\int_{0}^{a} x^{2} dx = a^{3}/3$		
0		(c) State and prove the fundamental theorem of Integra Calculus.		
0)			
0)	Unit-II		
0)			
0)	Q-2.(a)Discuss the maximum or minimum values of the function: $u = xy + \frac{a^3}{x} + \frac{a^3}{y}$ P.T.O		
))			
)		1.1.0	

0

- (b) Find the minimum distance from the origin to the plane x+2y-2z-12=0
- (c) Find the maximum and minimum value of $u = a^2x^2 + b^2y^2 + c^2z^2$ where $x^2 + y^2 + z^2 = 1$ and lx + my + nz = 0

Unit-III

- Q-3.(a) Test the convergence of $\int_{2}^{\infty} \frac{dx}{\sqrt{x^2 1}}$
 - (b) Test the convergence $\int_{a}^{\infty} e^{-x} \frac{\sin x}{x^2} dx$ where a > 0
 - (c) Prove that the integral $\int_a^b \frac{dx}{(x-a)\sqrt{b-x}}$ diverges.

Unit-IV

- Q-4.(a)Show that the plane : ax+by+cz=0 cuts the cone yz+zx+xy=0 in two perpendicular lines if $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
 - (b) The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the co-ordinates axes in A, B, C Prove that the equation of the cone genrated by the lines drawn from 0 to meet the circle ABC is

$$yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx\left(\frac{c}{a} + \frac{a}{c}\right) + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0$$

- (3) Code No.: B-420(B)
- (c) Find the equation of right circular cylinder whose radius is 3 and axis is $\frac{x-1}{2} = \frac{y-3}{2} = 5-z$

Unit-V

- Q-5.(a)Prove that the polar equation of a conic is $\frac{l}{r} = 1 + e \cos \theta$ where the focus is a pole.
 - (b) If Psp¹ is a focal chord of a conic whose focus is S and the equation is $\frac{l}{r} = 1 + e \cos \theta$ then

prove that
$$\frac{1}{sp} + \frac{1}{sp'} = a \text{ constant.}$$

(c) Find the polar equation of a straight line which is at a distance P from the pole and the perpendicular from the pole to the line makes an angle α with the initial line.