Code No.: B03/203

(C) Explain Asymptotics for linear terms.

Or

Define Real analytic function.

(D) State and prove Cauchy Kovalevskaya theorem.

12

4

Or

Write about stationary phase for wave equation and asymptotics for linear terms.

Roll No. of Sections: 4

Total No. of Printed Pages: 4

Code No.: B03/203

III Semester Examination

M.Sc.

Paper II

[PDE]

Time: Three Hours [Maximum Marks: 80 [Min. Passing Marks: 16

Note: Part A and B of each question in each unit consists of Very Short Answer Type Questions which are to be answered in one or two sentences. Part C (Short Answer Type) of each question will be answered 200-250 words. Part D (Long Answer Type) of each question should be answered within the word limit 400-450.

Unit-I

- 1. (A) Write uniqueness for heat equation. 2
 - (B) Write Dirichlet's principle for non-homogeneous Laplace equation. 2

Code No.: B03/203
State and prove Harnack's inequality for
harmonic function. 4
Or
State and prove estimates on derivatives for heat
equation.

(D) Derive the fundamental solution of Laplace equation. 12

Or

Derive the solution of non-homogeneous wave equation.

Unit-II

		Or	
	(C)	Derive Hamilton ODE.	4
		and Lagrangian function.	2
	(B)	Explain the relation between Hamilton function) 1
2.	(A)	Define complete integrals.	2

Derive the solution of Riemann's Problem.

(D) State and prove Asymptotics in L^{∞} norm. 12

Code No. : B03/203

Or

State and prove convex duality of Hamilton and Lagrangian.

Unit-III

3. (A) Define Fourier Transform.
(B) Define travelling wave.
(C) Explain Resolvents and Laplace Transform.
4
Or

Find the solution of porous medium equation using separation of variables method.

(D) State and prove Barenblatt's solution for porous medium equation. 12

Or

State and prove Hopf Cole Transformation.

Unit-IV

4. (A) Define singular perturbations.
(B) Define non-characteristic surface.
2
(B) P.T.O.