

Energy Audit, Environmental Audit & Green Audit of Govt. V.Y.T. PG Autonomous College Durg

Conducted & Prepared By:-

RAJ ENERGY SERVICES,

.......dedicated in energy conservation
62 & 81, DAYA NAGAR RISALI, BHILAI NAGAR, DIST. DURG, (C.G.)
PIN 490 006 E MAIL- resbhilai@gmail.com (M) 98261 79597

An ESCO Empanelled in Bureau of Energy Efficiency, New Delhi

1. INDEX

Sr. No.	Title	Page No.
1	Index	1
2	List of Tables & Figures	4
3	Acknowledgements	6
4	Disclaimer	7
5	Energy Audit, Environmental Audit & Green Audit Certificate	8
6	Auditor's Certificate	9
7	Introduction	10
8	Energy Management	20
8.1	Energy Scenario	20
8.2	Electricity Bill Analysis	21
8.3	Connected Load of College premises	23
8.4	Segment wise connected load and their percentages	24
8.5	Connected Load of Azad Hostel	24
8.6	Total Annual Energy Consumption	24
8.7	Segment wise Annual Unit Consumption College Premises	26
8.8	Segment wise Annual Unit Consumption Azad Hostel	26
8.9	Electricity Consumption from Solar Power Plant	27
8.10	Percentage of annual power requirement of the Institution met by the renewable energy sources.	31
8.11	Percentage of annual lighting power requirements met through LED bulbs.	32
8.12	College Activities in Energy Management	33
9	Water Management	37

9.1	Water Consumption	38
9.2	Rain Water Harvesting System	38
9.3	Rain Water Harvesting System at Govt. VYT PG Autonomous College	39
9.4	Amount of water received through rain	39
9.5	Other Activities of College in Water Management	41
9.5.1	Water Harvesting/Conservation Awareness Drive	41
9.5.2	Wastewater Management	43
9.5.3	National Webinar on Water Conservation	44
10	Waste Management	45
10.1	Solid Waste management	46
10.1.1	Non Bio degradable Waste – Plastic Bottles / Waste Paper etc	46
10.2	Liquid waste management	47
10.2.1	Re-use of waste water	47
10.3	E-Waste Management	49
10.4	Environment Management Policy: Leading the way to a cleaner and healthier Environment	50
10.5	Corrective Measure Adopted by Departments & Offices	53
11	Green Campus Management	57
11.1	Green Audit	59
11.2	Green Campus Policy of College	60
11.3	List of The Plants Audited	64
11.4	Carbon Footprint	67
11.4.1	Carbon Emission by Transportation	68
11.4.2	Carbon Emission by Electricity	69

11.5	Reduction of Carbon Emission at College	69
11.5.1	Reduction of Carbon Emission by Solar Power Plant	69
11.5.2	Reduction of Carbon Emission due to absorption of CO_2 by Tree Plantation	70
11.5.3	Total Reduction in Carbon dioxide emission at Govt. VYT PG Autonomous College, Durg Campus	70
12	Recommendation	71
12.1	Formation of ENCON Club	71
12.2	Replacement of all conventional tube light will replaced by energy efficient LED tube light:	72
12.3	Replacement of all conventional fans by 28 watt energy efficient fans.	72
12.4	Dust cleaning on Solar Photo Voltaic Modules Surface	75
12.5	Installation of Grid connected Solar Roof top system on the roof top of college	76
12.6	Enhancement of Energy Efficacy of light fitting	78
12.7	General Recommendation for Energy Saving in Office Equipment	79

Table 1 : Index

2. LIST OF TABLES & FIGURES

Table No.	Title	Page No.
1	Index	1
2	List of Tables & Figures	
3	Details of Institution	10
4	Total numbers of students, teachers &non teaching since last 5 years	14
5	Area used in college	15
6	Details of all service number and Contract Demand	21
7	Analysis of billings of meters of College for the year 2019-20	21
8	Analysis of billings of meters of College for the year 2020-21	21
9	Analysis of billings of Azad Hostel for the year of 2019-20 &2020-21	21
10	Connected load of college	23
11	Segment wise connected load and their percentages	24
12	Connected load of Azad hostel	
13	Total connected load in college	25
14	Annual unit Consumption	26
15	Annual Unit consumption of Azad hostel	26
16	Segment wise Annual Unit Consumption	26
17	%age of annual power requirement of the Institution met by the renewable energy sources.	31
18	% of annual lighting power requirements met through LED bulbs	32
19	Total Water storage capacity of sump wells	37
20	Overhead water storage tank capacity in college	37
21	Overhead water storage tank capacity in hostel	37
22	Total water consumption in college	38

			20
23		Area of roof for rain water harvesting system	39
24		Amount of water received through rain	39
25	Identification And Evaluation of Environmental Aspects and Associated Impacts		50
26		Green Area management	57
27		List of the plant audited.	66
28		Type and quantity of flora	66
29		Carbon emission by transport	68
30		Carbon Emission by Electricity	69
31		Total Carbon dioxide emission at Govt.VYT PG Auto. College	69
32		Reduction of Carbon Emission by Solar Power Plant	69
33		Carbon absorption by tree plantation.	70
34		Total Reduction in Carbon dioxide emission	70
35		Replacement of all conventional tube light will replaced by energy efficient LED tube light	72
36		Replacement of all conventional fans by 28 watt EE fans	73
37 Ge		General Recommendation for Energy Saving in Office Equipment	80
Figure I	No.	Title	Page No.
1		Graphical Representation of S.C. number, Contract Demand and maximum demand occurred in the year 19-20 & 20-21	22
2		Graphical Representation of Service Consumer number with average unit consumption in the year 2019-20 & 2020 – 21.	22
3		Total Connected Load	24
4		Annual Unit Consumption	27
5		Schematic Diagram of Off- grid Solar Power Plant	29
6		Graphical Representation of %age of annual power requirement of the Institution met by the renewable energy sources.	31
7		Graphical Representation of Percentage of annual lighting power requirements met through LED bulbs.	32
8		BLDC motor of Energy Efficient fan	74
9		How Net Metering works	76
10		A Solar roof top system	78

Table 2 : List of Tables & Figures

3. ACKNOWLEDGEMENTS

We express our sincere thanks to Dr. R. N. Singh, Principal, Govt. Vishwanath Yadav Tamaskar Post Graduate Autonomous College, Durg for his kind support and giving us the assignment to contribute in their effort towards Green initiatives & efficient energy management in the college.

We are highly indebted to Dr. Jagjit Kour Saluja, IQAC Coordinator for their guidance, intellectual advice and his kind support in completing the project.

Our boundless gratitude to other teaching and non-teaching staff associated with this Energy Audit, Environment Audit & Green Audit study of Govt. Vishwanath Yadav Tamaskar Post Graduate Autonomous College, Durg for extending cooperation during collection of data and field study work.

We trust that the findings of this study will help the college in improving their Green initiative towards creating awareness for healthy and sustainable environment.

Raj Energy Services, Bhilai

Sanjay Kumar Mishra

Certified Energy Auditor, EA-8696

4. DISCLAIMER

Warranties and Liability

While every effort is made to ensure that the content of this report is accurate, the details provided "as is" makes no representations or warranties in relation to the accuracy or completeness of the information found on it. While the content of this report is provided in good faith, we do warrant that the information will be kept up to date, be true and not misleading, or that this report will always (or ever) be available for use.

While implementing the recommendations site inspection should be done to constitute professional approach and adequacy of the site to be established without ambiguity and we exclude all representations and warranties relating to the content and use of this report.

In no event We will be liable for any incidental, indirect, consequential or special damages of any kind, or any damages whatsoever, including, without limitation, those resulting from loss of profit, loss of contracts, goodwill, data, information, income, anticipated savings or business relationships, whether or not advised of the possibility of such damage, arising out of or in connection with the use of this report..

Exceptions

Nothing in this disclaimer notice excludes or limits any warranty implied by law for death, fraud, personal injury through negligence, or anything else which it would not be lawful for to exclude.

We trust the data provided by the Govt. VYT PG Autonomous College, Durg, personnel is true to their best of knowledge.

5. CERTIFICATE

BAJ ENERGY SERVICES

dedicated in energy Conservation

62 8.81, Daya Nagar, Risali, Bhilai Nagar, 490006 (C.G.) Mob.: 9826179597 Email: resbhilai@gmail.com

ENERGY AUDIT, ENVIRONMENTAL AUDIT & GREEN AUDIT CERTIFICATE

This is to certify that M/s. Raj Energy Services has conducted Energy Audit, Environmental Audit & Green Audit of Govt. Vishwanath Yadav Tamaskar Post Graduate Autonomous College, Durg and submitted report under their Policy For Green Campus of the Institute.

Name of the Educational Institute	Govt. Vishwanath Yadav Tamaskar Post Graduate Autonomous College, Durg Near Raipur Naka, G.E. Road, Durg, [C.G.]		
Contact Details	(0788) 2359688 E - Mail : pprinci2010@gmail.com Website :www.govtsciencecollegedurg.ac.in		
Name of Principal	Dr. R.N.,Singh		
Details of facilities Audited	Office, All departments, Laboratories, Classrooms, seminar halls, Library, Hostel, Electrical Systems and complete Installations including Solar Power Plant, Rain Water Harvesting System Etc.		
Date of Audit Conducted	27th, 28th ,29th & 30th December 2021		
Name of Certified Energy Auditor	Sanjay Kumar Mishra		
Registration Number	EA- 8696		

For, Raj Energy Services

Date: January 1, 2022

(Sanjay Kumar Mishra)

Certified Energy Auditor from Bureau of Energy Efficiency, Ministry of Power, Government of India, New Delhi EA-8696

6. AUDITOR'S CERTIFICATE

BI	JREAU OF EN	RGY EFFICIENCY		
Examination Registration Certificate Registration		Serial Number: 5435		
Certific	ate For Cert	ified Energy III	anager	
Son/Daughter of Mr./Mr	s R. B. Mishra	Sanjay Kumar Mish	as passed the Nationa	
	rergy manager subjec	er held in the month of Ma t to the provisions of Burea		
This certificate sh	all be valid for five year	s with effect from the date of e prescribed refresher trainin		
	ASSESSMENT OF THE PARTY OF THE	in the Register of certifined by the Bureau of Energian		
Mr/Mrs/Ms. Sanjay Kumar Mishra is deemed to have qualified for appointment or designation as energy manager under clause (7) of Section 14 of the Energy				
Conservation Act, 2001	(Act No.52 of 2001).		n an	
Given under the of February, 2013		of Energy Efficiency, th	is .7day	
			1/2	
	PROPERTY AND ADDRESS OF THE PARTY OF THE PAR		Secretary Boreau of Energy Effic New Dollsi	
Digitally Signed RAKES Sun Mar 01 10:31:41 EST Socretary, REE New Della	2020			
Sun Mar 01 10:31:41 IST	2020	Dates of attending the refresher course	Secretary's Signature	

7 INTRODUCTION

Government Vishwanath Yadav Tamaskar Post-Graduate Autonomous College, Durg, Chhattisgarh, India is a leading higher education institution in Chhattisgarh. It is affiliated to Hemchand Yadav University, Durg. The college has been conferred with the status of autonomy by UGC in 1989. The college was accredited with a grade 'A+' by NAAC in the Third cycle and has been recognized by UGC as 'College with Potential for Excellence (CPE), receiving the grant under III Phase of the scheme.

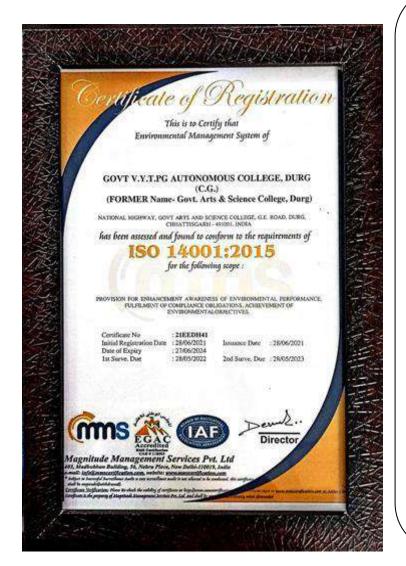

1.	Name of Institution	Govt. V.Y.T. PG Autonomous College, Durg (C.G.) -491001
2.	Address of the Institution	G. E. Road, Durg, (C.G.) (Opposite to B.I.T. Durg) 491001
3.	University Affiliated to	Hemchand Yadav University, Durg
6.	Name of the Principal	Dr. R.N. Singh
7.	Contact Number	9300119083
8.	E Mail ID	pprinci2010@gmail.com

Table 3: Details of Institution

Five departments from the faculty of Science and one from Social Science have been identified by UGC under CPE scheme as highly rated departments. The institute has been shortlisted and recognized under DBT Star College Scheme by the Department of Biotechnology (DBT) Govt. of India. Under this scheme, 6 departments from the faculty of Science have been selected for providing financial support. The Department of Chemistry was recognized under the Funds for improving Science and Technology Infrastructure (FIST) Scheme by the Department of Science and Technology, Govt. of India.

Science & Library Science	Arts, Social Science, &	Research
	Commerce	
Both UG and PG	Programmes	
Physics	Hindi	Physics
Chemistry	English	Chemistry
Mathematics	Economics	Mathematics
Botany	Geography	Botany
Zoology	Political Science	Zoology
Geology	Sociology	Geology
Microbiology	History	Microbiology
Biotechnology	Commerce	Biotechnology
Library and Information Science		Hindi
Only UG Programmes		English
Anthropology	Sanskrit	Economics
Computer Science	Psychology	Geography
		Political Science
		Sociology
		History
		Commerce

The college had a humble start with just two rooms and 12 students that housed Arts and Science faculty, at the local Hindi Bhawan. The foundation stone of the present building was laid by the then Chief Minister of Madhya Pradesh Dr. Kailash Nath Katju in November 1958. It was shifted to its present site, a campus of 21.75 acres, in 1962. Since then the college been continuously has growing in terms of infrastructure and learning resources in its journey towards excellence.

Presently the college is one of the biggest Govt. Colleges in Chhattisgarh, a Lead College* of Durg district that provides administrative and academic support and guidance to 83 (19 Govt. & 64 Private Colleges) colleges of the district. The college has a student strength of 7410 in the current session. It holds the unique opportunity of being a mixed bowl of urban, tribal, and rural students, the majority of them being first-generation learners. The college, since its commencement, is serving society in a significant way by providing higher education to first-generation learners, making this a distinctive feature of this institution.

The institution always cherished its location advantage for being situated close to Durg Railway Junction and Bus Stand, alongside main road connecting state highways.

Govt. VYT PG Autonomous College has installed a Solar Power Plant of 10 KW capacity and a solar power plant of 50 KW is in pipeline.

	2020-21	2019-20	2018-19	2017-18	2016-17
Number of students	7115	5746	5412	5079	4469
Teachers	117	112	109	109	109
Non- Teaching Staff	91	87	82	82	78
Total	7323	5945	5603	5270	4656
Number of Working days	176	182	216	232	233

Table 4: Total numbers of students, teachers & non teaching since last 5 years

Paramarsh Scheme of UGC for mentoring of other Institute of this region. Awarded **Global awards 2021** as **Excellence in educational services** for Best Research Impact under the "College Awards" Category. The Department of Higher Education, Govt. of Chhattisgarh has identified this institution as Lead College of District Durg to mentor and monitor academic and administrative

Total land (area in Acre)	21.75 Acre
2. Constructed area (in sq ft)	7.2 Acre
3. Total proposed area for development (in sq ft or in acre)	5.9 Acre
4. Total proposed area for greenery and environmental services including water harvesting and composting (in sq ft or in acre)	2.3 acre
5. Whether there is a Land use management plan available for the campus (Yes / No)	Yes

Table 5: Area used in college

Keeping pace with the challenging need of the day the college has undergone major paradigm shift in terms of pedagogical methodology, from conventional ways of teaching to ICT enabled teaching. It has successively established smart classrooms, provided with Wi-Fi connectivity and computerized library to facilitate effective teaching and learning.

Library

The college library is fully automated with RFID facility and well equipped with books, journals, periodicals and reading rooms. The library has web-OPAC for providing remote access to its repositories of textual resources. Along with book bank facility for SC and ST students, library has specially designed furniture for divyang students and books in BRAILLE are also available for the visually challenged students.

Career Counselling and Placement Cell

Career Counselling and Placement Cell monitors activities related to job notifications and opportunities, Interview preparation, development of entrepreneurial skills, organizing of campus Interviews besides ensuring maximum participation in campus recruitments and interviews. The cell works in coordination with all Head of departments to cater to diverse need of students. It is actively engaged in organizing Inspirational lectures by experts.

It aims at guiding students towards cracking Civil Service exams. The Cell also attempts at encouraging students by providing them opportunities to interact with young probation officers, senior civil servants, Defense Officers etc. who have already cracked the exams.

The college is moving forward with a multi-pronged strategy towards excellence with a view to come out as an institution of the future that prepares the students equipped with knowledge, skill, aptitude and social commitment.

General issues:

Awareness of Environmental policy	Yes
> Environmental protection rules	 Ban on single use plastic Proper disposal of discarded and unsafe materials of laboratories Periodic use of bicycles Controlled use of water
> Housekeeping schedule	 Regular dusting and mopping in class rooms, veranda and laboratory areas
Activities done for environmental cleanliness	 Plantation Awareness campaigns
> Celebration of Important days	 World Environment Day, Earth Day, Ozone Day, National Pollution prevention Day, Vishwa Shaochalya Diwas etc.
 Participation in Local and National Environmental protection movements 	 Participation in Swachh Bharat Movement Activities through NSS, YRC

Vision of College

To empower the youth, especially belonging to the underprivileged sections of society, through quality education by inculcating philanthropic values and enabling them to meet the challenges of the contemporary knowledge society.

Mission

To translate the vision into reality the institution is committed to -

- Embrace in its fold students from all sections and categories especially addressing to the needs of the first generation learners.
- Expose the students (especially the under-privileged ones) to variety of activities, academic and extra-academic, aiming at their overall development.
- Inculcate humanistic and social values in the students to motivate them towards community services.
- Kindle the entrepreneurial spirit in students.
- Inspire the young minds to develop the habits of critical thinking to achieve Creative Excellence.
- Promote quality research among the teachers and students.
- Sensitize the students on issues relating to ecology, environment, human rights and gender equality.
- Foster global competencies.

The Covid 19 brought in new challenges into the entire education system due to the sudden lockdown. Exams of the undergraduate classes and the teaching of the semester classes were suspended.

• The professors took the initiative of immediately opening the online teaching classes for the students. Video lectures, reading materials in the form of pdfs, audio lectures were uploaded to the college website for the benefit of the students.

- The students were also supported with their assignments and courses through Calls, Whatsapp groups, and U-tube lectures.
- The department of English Took the initiative of holding the first International Webinar in the state to address the issues of Virtual Education on the topic Emerging Challenges in Teaching Literature and Language in the Virtual World. Attended by nearly 200 participants from 7 different countries, the participants and Invited Speakers shared the platform to brainstorm on the topic and looked into the challenges and the possible solutions.
- As a follow-up of the result of the webinar, the department then organized a 5 day FDP on Teaching Learning and Research.
- Other departments like, Chemistry, Zoology, Mathematics, Biotechnology too have been holding webinars on their subjects.
- The Department of Zoology has held 6 webinars.
- The Department of History has organized a webinar specially for students and research scholars in which the participants also presented their papers.
- The students of NSS, YRC and NCC have supported the community during the lockdown by making and distributing masks, distributing sanitizers, explaining Social distancing in the markets and other public places.

- Auditing for Energy Management of the Govt. VYTPG Auto.
 College for Environmental Consciousness and Sustainability.
- Alternate Energy initiatives such as: Percentage of annual power requirement of the Institution met by the renewable energy sources.

 Percentage of annual lighting power requirements met through LED bulbs (Current year data)

8. ENERGY MANAGEMENT

Energy Management is the strategy of adjusting and optimizing energy, using systems and procedures so as to reduce energy requirements per unit of output while holding constant or reducing total costs of producing the output from these systems"

Principle of Energy Management

- Procure energy at lowest possible price
- Manage energy use at highest energy efficiency
- Reusing and recycling energy
- Select low investment technology to meet present requirement and environment condition
- Make use of wastes generated within the plant as sources of energy and reducing the component of purchased fuels and bills

8.1 Energy Scenario

Electrical energy is supplied by Chhattisgarh State Power Distribution Company Limited. There are total six energy meter catering the electrical demand of Government VYT PG Autonomous College Durg. One of the LT connection meter is only for boys hostel and other five LT connections are catering the electrical demand of college premises.

An off- grid solar power plant having 10 KW capacity is commissioned as use of renewable energy.

This solar power plant is installed on 12th September,2018 by Electromech devices Manufacturing Co. P. Ltd. And solar modules are supplied by Tata Power.

The energy generated by solar power plant is recorded by an energy meter. The maintenance of solar power plant is done by Chhattisgarh State Renewable Energy Development Agency

Total Contract Demand in KW	238.605

8.2 Electricity Bill Analysis

We have analyzed the electricity bills of all the connections of college premises and Azad hostel.

S1.			Contract	
No.	Name of Connections	Service Number	Demand in Watt	Tariff Category
	Science College,			
1	Principal VYTPG	1007771720	36000	LV2ND3OT19
2	Dr Siddhiki Azad Hostel	1007795059	47000	LV1DL1SG19
3	Library	1000664394	20000	LV2ND3SG19
	Govt Arts & Science			
4	college	1002042325	48000	LV2ND3SG19
5	Science college	1000664205	41005	LV2ND3SG19
6	Zoology Lab	1004227549	46600	LV2ND3SG19
	Total		238605	

Table 6: Details of all service number and Contract Demand.

Analysis of billings of meters of College premises

	S.C. No.	Contract Demand in KW	Maximum Demand in KW	Average Unit Per Month
2019-20	BP No. 1007771720	36	6	790
	BP No. 1002042325	48	24.57	1638
	BP No. 1000664205	41.005	39.68	5697
	BP No. 1004227549	46.6	17	1415
	BP No. 1000664394	20	10	1354
	Total	191.605	97.25	10894
	Total Average Annua	1,30,728		

Table 7: Analysis of billings of meters of College premise for the year 2019-20

	S.C. No.	Contract Demand in KW	Maximum Demand in KW	Average Unit Per Month
2020-21	BP No. 1007771720	36	12.6	295
	BP No. 1002042325	48	16.4	701
	BP No. 1000664205	41.005	14.92	2498
	BP No. 1004227549	46.6	10	757
	BP No. 1000664394	20	10	736
	Total	191.605	63.92	4987
	Total Average Annual Unit Consumpt	ion		59,844

Table 8: Analysis of billings of meters of College premise for the year 2020-21

Analysis of billings of Azad Hostel

Year	Contract Demand in KW	Maximum Demand in KW	Average l Per Month	Jnit
2019-20	47	2.4	1137	
2020-21	47	11.4	1655	

Table 9: Analysis of billings of Azad Hostel for the year of 2019-20 & 2020-21

Graphical Representation of Service Consumer number, Contract Demand and maximum demand occurred in the year 2019-20 and 2020 - 2021

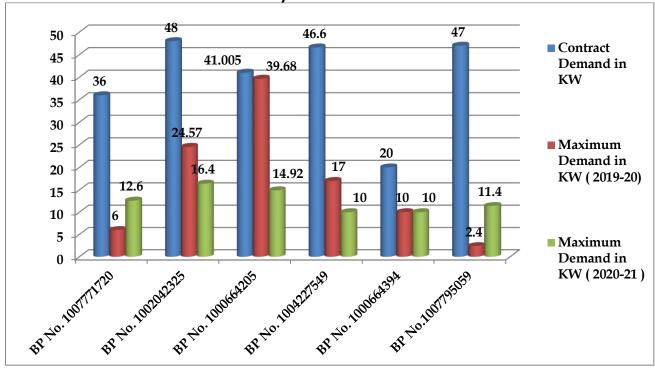


Figure 1: Graphical Representation of Service Consumer number, Contract Demand and maximum demand occurred in the year 2019-20 and 2020 - 2021

Graphical Representation of Service Consumer number with average unit consumption in the year 2019-20 & 2020 – 2021.

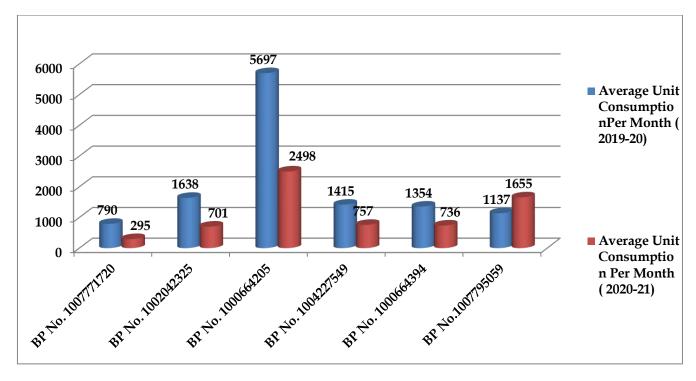


Figure 2: Graphical Representation of Service Consumer number with average unit consumption in the year 2019-20 & 2020 - 2021

8.3 Connected Load of College premises

Segment	Electrical Equipment	Wattage	Quantity	Total load in Watt
		20	570	11400
	LED TL	23	325	7475
	FTL TL	40	325	13000
liabia a		36	251	9036
	LED Street Light	36	17	612
		50	7	350
		200	3	600
Lighting	LED Bulb	9	66	594
		15	125	1875
		18	38	684
		23	17	391
	LED Panel Light	12	5	60
		15	10	150
	Total Lighting Load	d		46227
	Ceiling Fan	80	1340	107200
	Wall Fan	70	17	1190
	Cooler 18"	300	22	6600
	Symphony Small	150	7	1050
	Symphony Big	250	8	2000
HVAC	Exhaust Fan 12''	150	7	1050
HVAC	Exhaust Fan 14"	200	4	800
	Exhaust Fan 18''	250	39	9750
	Air Conditioner 1 T	5	1000	5000
	Air Conditioner 1.5 T	27	1600	43200
	Air Conditioner 2 T	3	2100	6300
	Total HVAC Load	T		184140
	Computer	100	318	31800
Office	Printer	55	22	1210
Equipment	Photo Copy Machine	600	16	9600
	Total Office Equipr	ment Load		42610
	Submersible pump	750	1	750
		375		
Water	pump 1	0	11	3750
Supply		225		
	pump 2	0	1	2250
	Total Water Supply	Load		6750
	Water Cooler Small	300	8	2400
	Water Cooler Big	600	2	1200
Others	Smart Board	150	8	1200
Onicis	Refrigerator Medium	500	15	7500
	Others			20000
	Total Ot	her Connecte	d Load	32300
	312027			
	Total Connected Loc	ıd in Kilo Watt	(Say)	312 KW

Table 10: Connected load of college

8.4 Segment wise connected load and their percentages

Segment	Total load in Kilo Watt	Load in Percentage
Lighting	46.3	15
HVAC	184	59
Water Supply	6.75	2
Office Equipments	42.6	14
Others	32.3	10

Table 11: Segment wise connected load and their percentages

Graphical Representation of Connected Load

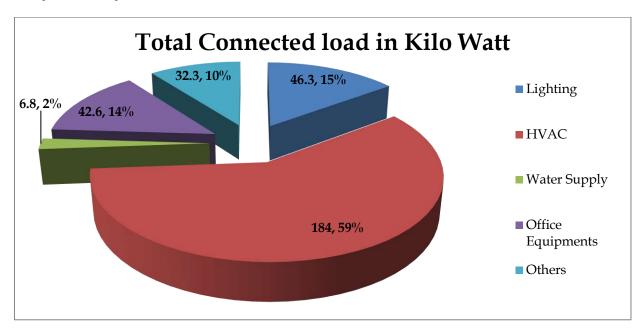


Figure 3: Total Connected Load

8.5 Connected Load of Azad Hostel

Segment	Electrical Equipment	Wattage	Quantity	Total
	FTL 40 watt	40	95	3800
	LED TL 20 Watt	20	80	1600
	LED Bulb	9	12	108
	LED Bulb	15	19	285
Lighting	LED Bulb	23	7	161
	LED Street Light	36	4	144
	LED Street Light	50	2	100
	LED Street Light	100	1	100
	Total Lighting Load			6298
	Ceiling fan	70	90	6300
HVAC	Water Cooler	300	4	1200
HVAC	Water Cooler big	550	1	550
	Total HVAC Load		8050	
Others	Others	1200		
Total Connec	15548			
Total Connec	cted Load in Kilo Watt			16 KW

Table 12: Connected load of Azad hostel

Total Connected Load in College

Connected Load of Govt. VYT PG Autonomous College	312 KW
Connected Load of Azad Hostel	16 KW
Total Connected Load of Govt. VYT PG Autonomous College including Azad Hostel	328 KW

Table 13: Total connected load in college

8.6 Total Annual Energy Consumption

Segment	Electrical Equipment	Wattage	Quantity	Hours	No. of Days	Diversity Factor	Annual Unit Consumption
		20	570	6	210	0.4	5746
	LED TL	23	325	6	210	0.4	3767
		40	325	6	210	0.4	6552
	FTL TL	36	251	6	210	0.4	4554
		36	17	12	365	1	2681
	LED Street Light	50	7	12	365	1	1533
Lighting		200	3	12	365	1	2628
		9	66	4	50	1	119
	LED Bulb	15	125	12	365	1	8213
	LED BUID	18	38	12	365	1	2996
		23	17	12	365	1	1713
		12	5	6	280	1	101
	LED Panel Light	15	10	6	210	1	189
	Ceiling Fan	70	1340	6	180	0.3	30391
	Wall Fan	70	17	6	180	0.5	643
	Cooler 18"	300	22	4	120	0.5	1584
	Symphony Small	150	7	4	120	0.5	252
	Symphony Big	250	8	4	120	0.5	480
HVAC	Exhaust Fan 12"	150	7	6	210	0.7	926
	Exhaust Fan 14"	200	4	6	210	0.7	706
	Exhaust Fan 18"	250	39	6	210	0.7	8600
	Air Conditioner 1 T	5	1000	5	110	0.5	1375
	Air Conditioner 1.5 T	27	1600	5	110	0.5	11880
	Air Conditioner 2 T	3	2100	5	110	0.5	1733
	Computer	70	318	6	210	0.1	2805
Office	Printer	55	22	3	210	0.1	76
Equipment	Photo Copy Machine	600	16	3	210	0.25	1512
	Submersible pump	750	1	2	365	1	548
Water	pump 1	3750	1	1	310	1	1163
Supply	pump 2	2250	1	1	310	1	698
Othora	Water Cooler Small	300	8	7	210	1	3528
Others	Water Cooler Big	600	2	7	210	1	1764

Smart Board	150	8	1	100	0.3	36
Refrigerator Med	ium 400	15	12	210	1	15120
Other Equipments						4116
Total Annual Ene	130728					

Table 14: Annual unit Consumption

The connected load is comprised of class room & office lighting, Heating, ventilation and air conditioning, Street lighting and other connected load.

The details of annual unit consumption of Azad hostel is mentioned below:-

Azad Hostel

Segment	Electrical Equipment	Wattage	Quantity	Hours	No. of Days	Diversity Factor	Annual Unit Consumption
Segment	Equipment	vvallage	Quantity	nouis	Days	ractor	Consumption
	FTL 40 watt	40	95	8	240	0.8	5837
	LED TL 20 Watt	20	80	8	240	0.8	2458
	LED Bulb	9	12	8	240	0.8	166
Lighting		15	19	8	240	0.8	438
Lighting		23	7	8	240	0.8	247
		36	4	12	365	1	631
	LED Street Light	50	2	12	365	1	438
		100	1	12	365	1	438
HVAC	Ceiling fan	70	90	12	240	0.8	14515
Othors	Water Cooler	300	4	8	240	1	2304
Others	Water Cooler big	550	1	8	240	1	1056
•	Total Ann	ual Energy (Consumptio	n in KWH		•	28528

Table 15: Annual Unit consumption of Azad hostel

8.7 Segment wise Annual Unit Consumption College Premises

Segment	Annual Unit Consumption	
Lighting	40792	
HVAC	58570	
Office Equipment	4393	
Water Supply	2409	
Others	24564	

Table 16: Segment wise Annual Unit Consumption

8.8 Segment wise Annual Unit Consumption Azad Hostel

Segment	Annual Unit Consumption
Lighting	10653
HVAC	14515
Others	3360
Total	28528

Graphical Representation of Annual Unit Consumption in College Premises

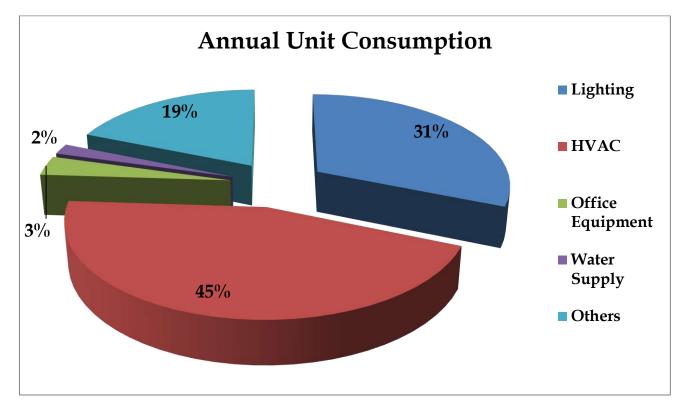


Figure 4: Annual Unit Consumption

The maximum share of connected load is HVAC i.e. 45%

8.9 Electricity Consumption from Solar Power Plant

An off-grid solar system permits electricity to be harnessed by solar panels and stored inside a battery without direct connection to the utility grid, providing an independent power supply to your home or business.

Basically, an off-grid solar system is a novel innovation which provides you independent energy harnessed by the sun. An off-grid solar system is made up of the following components.

- solar panels
- charge controllers
- battery bank(s)
- inverters

College has installed an off grid solar power plant of 10 KW Capacity.

The ingenuity of an off-grid solar energy system is made-up of the efficiency of its components. A solar energy system's solar panels, charge controllers, battery bank, and inverters all work together to provide your laptop or refrigerator energy, and this is how.

Off-grid solar energy systems work by...

- 1. **Solar Panels (PV array).** Solar panels are set either on your rooftop or in an open yard or property space. The Sunlight is soaked up by the solar panels and transferred to the charge controllers.
- 2. **Charge Controllers.** The charge controller is the "delivery man" between the solar panels, the inverters, and the battery bank. Charge controllers also act as a regulator, ensuring that the amount of power received through the solar panels does not overload the battery, instead keep the battery fully charged and top it off when needed. The charge controllers either deliver the energy directly as DC power to your lights or to the inverters to be converted into AC power for household appliances and all excess energy goes to the...

- 3. **Battery Bank.** With the charge controllers feeding energy to the batteries, the battery bank acts as the heart of the off-grid solar system, as it stores up excess energy for cloudy days and nights, when needed it pumps electricity to the...
- 4. **Inverters.** Lastly, inverters convert the DC (direct current) power into AC power which is passed on to be digested by college electrical appliances as DC power and allows student & staff of the college to switch on the light, fan or any other electrical equipment.

Schematic Diagram of Off- grid Solar Power Plant

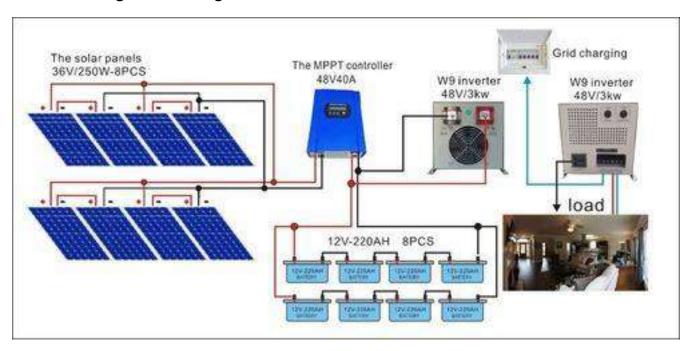
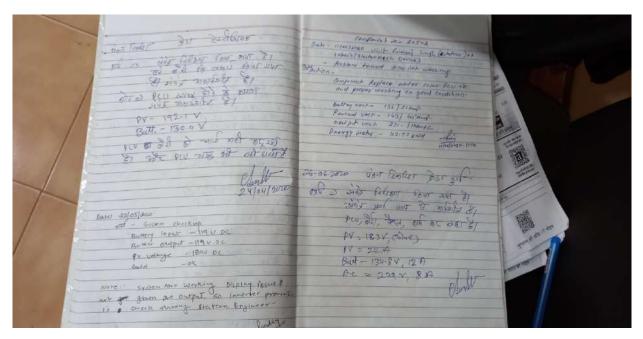



Figure 5: Schematic Diagram of Off- grid Solar Power Plant

The Solar power plant is maintained by CREDA, Durg. They take the record of Solar power generation and maintenance activity in a register.

The Solar Power plant was installed on 12th September 2018 and commissioned on 17th November 2018. Total 35 numbers of solar modules of Tata Solar make, each having 295 W capacity are installed. Rated voltage is 36.50 Volt.

Total 60 numbers of Hi Power make LAML battery of 600 AH, 2 V are connected. Technician of CREDA comes once in a three month for regular check up.

Consumed solar power is recorded in a meter. Old meter is replaced by new meter.

Unit Consumed from solar power in Three yeas

Unit recorded in old meter	3742
Unit recorded in old mete	9234
Total Electricity consumed	12976
Unit Consumed per year	4325

.10 Percentage of annual power requirement of the Institution met by the renewable energy sources.

Total Contract Demand in KW	239
Capacity of Solar Power Plant	10

Total Contract Demand in KW	239
Capacity of Solar Power Plant	10
Percentage of annual power requirement of the Institution met by the renewable energy sources.	4.2 %

Table 17: Percentage of annual power requirement of the Institution met by the renewable energy sources.

Graphical Representation of Percentage of annual power requirement of the Institution met by the renewable energy sources.

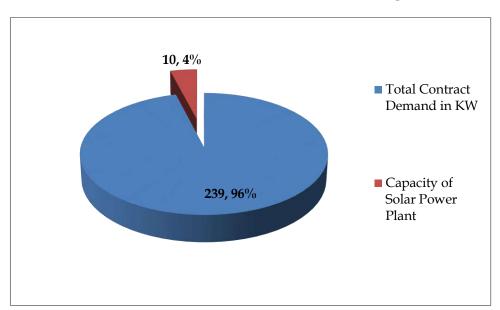


Figure 6: Graphical Representation of Percentage of annual power requirement of the Institution met by the renewable energy sources.

Thus, Solar power contributes 4 % of total power requirement in college.

.11 Percentage of annual lighting power requirements met through LED bulbs.

Types of Lightings	College Premises	Azad Hostel	Total
LED Lighting Load	24191	2498	26689
Conventional Lighting Load	22036	3800	25836
Total Lighting Load	46227	6298	52525
Percentage of annual lighting pow	51		

Table 18: Percentage of annual lighting power requirements met through LED bulbs

Graphical Representation of Percentage of annual lighting power requirements met through LED bulbs

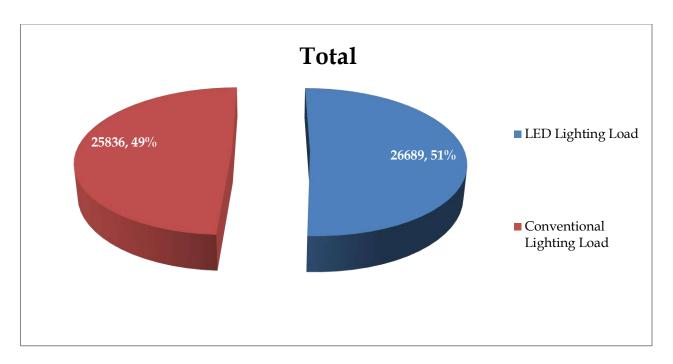


Figure 7: Graphical Representation of Percentage of annual lighting power requirements met through LED bulbs

Thus, LED lighting covers 51% of total lighting power requirement.

8.12 College Activities in Energy Management

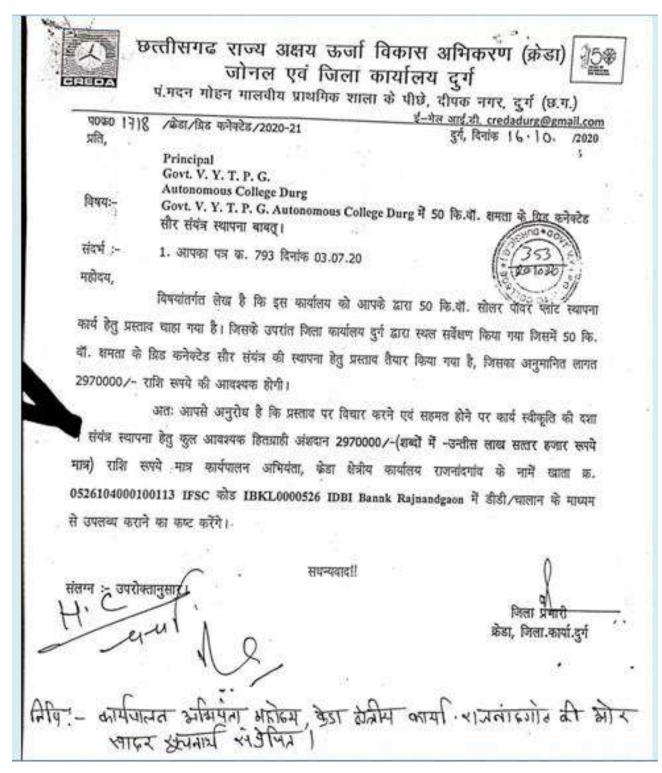
1) Installation of Motion Detectors in college premises

It has been estimated that a single unit of energy saved at the end use point is equal to 2.3 units of energy produced. Keeping this in mind, College has installed motion sensors at different important rooms in college.

Motion sensors automatically turn outdoor lights on when they detect motion and turn them off a short while later. They are very useful for outdoor security and utility lighting as seen from above pictures.

Brief Introduction of Motion Detectors:

They can detect the Infrared Rays released by human body. The light or any other electrical appliance can be activated automatically by the active presence of a human body within the detection range / coverage area & when there is no presence the light will be deactivated automatically.


Control of lights through motion-sensors may also be appropriate for areas that are periodically used throughout the day. Typical uses may be; single occupancy offices, hall, bathrooms and staffrooms. By automatically turning off after a few minutes, they avoid wasted energy use and help conserve resources. These sensors have many benefits given below

- Allow significant savings on energy bills
- Cheap and simple to install, particularly wireless systems
- User-friendly
- Convenient lights switched on automatically when needed
- Long battery life due to their low power consumption
- Help with health and safety requirements (e.g. lighting in corridors) Therefore, Control
 of lights through motion-sensors has been installed in our college for energy saving.

Motion sensors automatically turn outdoor lights on when they detect motion and turn them off a short while later. They are very useful for outdoor security and utility lighting as seen from above pictures.

2) Proposed Plan for Installation of Grid Connected Solar Power Plant

Govt. VYT PG Autonomous College has planned to install a grid connected solar power plant of 50 KW capacity. CREDA (A State Designated Agency of Bureau of Energy Efficiency, New Delhi) is principally agreed for installation of solar power plant. The paper work is under process.

ऊर्जा की बचत के लिए जागरुकता जरूरी: तिवारी

हरिम्रीन न्यूज 🕪 दुर्ग

भौतिक शास्त्र विभाग में भौतिक परिषद का उद्घाटन हुआ। कार्यक्रम की शुरुआत कार्यक्रम के मुख्य अतिथि संजय तिवारी एसऑएस इलेक्ट्रानिक्स एण्ड फोटानिक्स

 ऊर्जा की आवश्यकता व उपयोगिता की दी जानकारी

विभाग, पंडित रविषंकर शुक्ल विश्वविद्यालय, रायपुर तथा कार्यक्रम की आध्यक्षता डॉ अर्थ, गुप्ता विभागाध्यक्ष कॉमर्स का स्वागत पुष्पगुच्छ द्वारा विभागाध्यक्ष डॉ पुणां बोस ने किया। डॉ तिवारी ने

अपने व्याख्यान के दौरान कर्ज़ा की आवश्यकता एवं उपयोगिता पर अपने विचार प्रस्तुत किए। उन्होंने बताया कि प्रत्येक व्यक्ति को ऊर्ज़ा की बचत के साथ-साथ ऊर्ज़ा के उत्पादन के बारे में सोचना चाहिए। ऊर्जा उत्पादन के लिये उन्होंने विभिन्न परंपरागत खोत, रेनुवल ऊर्जा एवं सोलर सेल के बार में विधिवत बतावा। अभी अवाडड मीनिमाइज जनस्ट (प्राम्जी) माँ किया तो पविषय में जो माँव गाँड (ओ.एम.जी) करना पड़ेगा।

(आ.एम.जा) करना पड़गा। भौतिक परिषद के उद्घाटन के बाद डॉ अनिता शुक्ला प्रभारी भीतिक परिषद ने सचिव एवं सहराचिव के नायों की घोषणा की। एमए एससी तृतीय सेमेस्टर से लिए पार्टी हिंदी होंगे होंगे सेमेस्टर की अवित सिंह को सहसचिव बनाया । उसके बाद भीतिक विभाग में विभन्न प्रतिभोगिताओं में विभन्न प्रतिभोगिताओं में प्रकार का नाविक प्रतिभागिताओं को पुरस्कृत किया गया। निवंध प्रतिभागिता में प्रथम स्थान डीमिनला, प्रतिक्षा एवं लक्ष्मी प्रसाद जविक डितीय स्थान सैतेष, रेहित एवं लीना सुधाकर प्राप्त हुआ। पोस्टर प्रतिथोगिता में प्रथम, हितीय एवं तिवीय एवं तिवीय स्थान सैतीय एवं स्थान समता, प्रीकृत इक्का

तथा अजिल्ला वस्त न प्राप्त क्रिया पावर प्वाइंट प्रतिवीरिता में प्रथम, द्वितीप पर्य तुतीय स्थान प्रयोक्ष प्रिंस एवं आकर्षित ने प्राप्त क्रिया। कार्यक्रम के दीवन क्रां जगजीत कीर सत्तृज्ञ, डां जगर, एस. सिंह, सित्वेशन पर्याक्ष, डां अभिषेक मिश्रा उपरिक्षत रहीं मेच का संचालन प्रतीक्षत रहीं मेच का संचालन प्रतीक्षत त्वापन लक्ष्मी प्रसाद ने दी। इसके साथ एम. एससी प्रथम एखं तृतीय सेनेस्टर के विद्यार्थियो हास भीतिक शास्त्र विभाग में वृक्षारोपण भी किया गया। प्राचार्थ डां अर. एन. सिंह ने विजयी प्रतिभागियों को यथाई दी।

अभी एएमजी नहीं किया तो भविष्य में ओएमजी करना पड़ेगा : डॉ. तिवारी

September 27, 2019 | Career, Education | No comments

दुर्ग। वीवायटी पीजी कालेज के भौतिक शास्त्र विभाग में भौतिक परिषद का उद्घाटन हुआ। मुख्य अतिथि संजय तिवारी एसओएस इलेक्ट्रानिक्स एण्ड फोटानिक्स विभाग, पंडित रविशंकर शुक्ल विश्वविद्यालय, रायपुर ने ऊर्जा की आवष्यकता एवं उपयोगिता पर अपने विचार प्रस्तुत किये। उन्होंने बताया कि प्रत्येक व्यक्ति को ऊर्जा की बचत के साथ-साथ ऊर्जा के उत्पादन के बारे में सोचना चाहिए। उन्होंने विभिन्न परंपरागत स्रोत, रिनुएवल ऊर्जा एवं सोलर सेल की चर्चा की। डॉ. तिवारी ने कहा कि अभी अवाइड-मीनिमाइज-जनरेट (एएमजी) नहीं किया तो भविष्य में ओ-मॉय-गॉड (ओएमजी) करना पड़ेगा।

- Auditing for Water Management of the institute for Environmental Consciousness and Sustainability
- Rain water harvesting structures and utilization in the campus

9. WATER MANAGEMENT

This indicator addresses water consumption, water sources, irrigation, storm water, appliances and fixtures. Aquifer depletion and water contamination are taking place at unprecedented rates. It is therefore essential that any environmentally responsible institution should examine its water use practices.

Govt. VYT PG Autonomous College, Durg gets water from municipal Corporation, Durg and one ground water bore well sources. There are two sump well. The upper surface area of one of the sump well is circular and another is in square form.

Sump well	Cubic Feet	Water Storage Capacity in Litre
Circular	1766	50008
Squared	1000	28317
Total Ca	pacity	78,325

Table 19: Total Water storage capacity of sump wells

Two submersible pumps having rating of 5 HP & 3 HP are operated to lift water from sump well and one submersible pump of 1 HP capacity is dedicatedly operated for gardening. College has presently 14 nos. Over head water storage tanks each having capacity of 1000 litre. Thus college have total 36000 litre of water storage capacity.

College

SI. No.	Water Tank Capacity	Numbers	Total Capacity								
	Old Building										
1	5000	4	20000								
2	2000	2	4000								
3	1000	4	4000								
Total Consumption	of water in Litre		28000								
	Nev	v Building									
3	2000	4	8000								
	Total Capacity ir	Litre	36000								

Table 20: Overhead water storage tank capacity in college

Azad Hostel

SI. No.	Water Tank Capacity	Numbers	Total Capacity
1	1000	1	1000
2	1000	5	5000
3	2000	1	2000
	Total Capacity in Litre		8000

Table 21: Overhead water storage tank capacity in hostel

Quantities of water taps and water coolers

Description	College	Hostel
Water Taps	321	79
Water Coolers	10	6

9.1 Water Consumption

	Water Audit at Govt.	VYT PG Autor	nomou	s College,	Durg						
1	2	3		4	5	6					
	Average litres of	Number	Total	water	Number of	Water					
	water used per	of times	used	by a	people in	Consumption					
Activity	activity in litres	activity	perso	n each	the College	per day					
		done each	day (litres)	using water						
		day									
College Premises											
Wash hands and face	1.5 litres	One times	a day	1.5	1600	2400					
Bath	60-120	once		90	6	540					
Toilet / Urinal flush	6 To 21	once		6	1800	10800					
Drinking	0.4	Three		1.2	4800	5760					
Washing dishes (hand)	Basin	Four		4	1200	4800					
Laboratory						500					
Overflow of water &	300				-	400					
Leakage						400					
Gardening	1600	once		1600	1	1600					
Canteen	1			1	1200	1200					
Total Consumption of water	in litre (A)					28000					
	Azad Ho	ostel									
Overflow of water& leakage	120	2				240					
Hostel (Wash hands and face	e) 1.25 litres	Two times	a day	2.5	160	400					
Hostel (Bath)	60-120	once		85	160	13600					
Hostel (Toilet flush)	6 To 21	once		6	160	960					
Hostel Washing dishes (hand	ishes (hand) Basin Once 1		1	160	160						
Hostel Drinking (cup)	0.4	10 Time	es	4	160	640					
	Total Consumption of	water in liter	(B)			16000					
Total wa	ter consumption in co	llege [Sum of	(A) an	d (B)]		44000					

Table 22: Total water consumption in college

9.2 Rain Water Harvesting System

Rainwater harvesting is a technology used to collect, convey and store rain water for later use from relatively clean surfaces such as a roof, land surface or rock catchment. RWH is the technique of collecting water from roof, Filtering and storing for further uses. Rainwater Harvesting is a simple technique of catching and holding rainwater where its falls. Either, we can store it in tanks for further use or we can use it to recharge

groundwater depending upon the situation. RWH system provides sources of soft, high quality water reduces dependence on well and other sources and in many contexts are cost effective.

9.3 Rain Water Harvesting System at Govt. VYT PG Autonomous College

The college has a rain water harvesting system Other buildings can be connected, though more pits are required for the same.

Location of Rain water harvesting system	Area of roof in Sq. Ft.
Sports Department	4200
New Building	7223
Tagore Hall	4260
Girls Common	5772
Total Area	21455

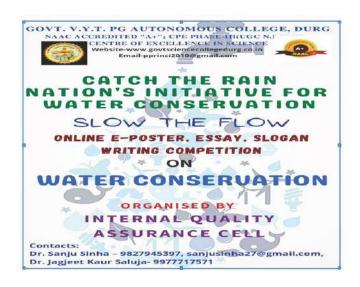
Table 23: Area of roof for rain water harvesting system.

9.4 Amount of water received through rain

Open roof area (A)	1993 Sq. Meter
Average rain fall per square meter in Bhilai (B)	1200 mm or 1.20 Meter
Amount of water received through rain $(C = A \times B)$	2392 Cu. Meter
Run off Coefficient factor through rain (D)	0.80
Total water received (E =C x D)	1912 Cu. Meter

Table 24: Amount of water received through rain

Under Jal Shakti Abhiyan -2019, college has made efforts to ensure water conservation and water harvesting. The campaign has been channelized with the Motto "Be Water Smart, Every Drop Counts" following the 3R principle - Reduce, Reuse and Recharge.


9.5 Other Activities of College in Water Management

9.5.1 Water Harvesting/Conservation Awareness Drive

A. Constitution of Eco-club: An Eco-club has been constituted to sensitize students towards environmental issues through various activities. On the occasion of World Earth Day, an ignition programme was organized by Eco-Club on 20-22 April, 2021. Competitions under three categories – Concept note, Poster and Graphical Abstract on various themes to ignite the young generation to ensure future prospects of Restoration of Earth was organized which was evaluated by a team of jury members.

B. To create awareness of water conservation and water harvesting among students, several competitions like Slogan competition, Poster competition, Essay competition, etc have been organized on 27 May, 2021 with the theme "Slow the Flow" and were met with massive participation. All the participants were provided with e-certificates for participation along with special Winner e-certificates to the top three rank holders.

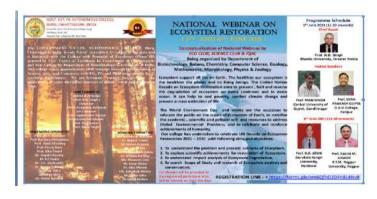
Participation of VYT PG Autonomous College, Durg on University Level Competitions:

a. Three faculty members contributed in oral presentation competition on Water Conservation conducted by Hemchand Yadav University, Durg.

- Dr. Neeru Agrawal: Conserving household waste water by putting it to alternate domestic use.
- Dr. Pragya Kulkarni: Water conservation Grounding and approach
- Prof. Mausumi Dey: Use and reuse of Grey Water
 - b. Many students participated in various competitions organized with the aegis of Water conservation at University level.

9.5.2 Wastewater Management

- C. Waste water discharge from the canteen is directed to a small tank named Lotus tank. It is surrounded by a wire mesh. The tank contains a variety of eye catching aquatic plants. Water of this pond is used to irrigate the nearby seasonal plant beds.
- D. A temporary pond has been constructed beside the girls hostel to collect the water from Railway washing yard located near the college campus. The pond serve as a recharge point source for underground water as well as while some of it is used for onsite construction and irrigation of plants spread across the college campus.
- E. More than 10 water purifiers are installed at various sites throughout the college campus. Waste water from these purifier outlets is used to water various indoor and outdoor plants to ensure least water wastage and beautification of the campus.
- F. Potted plants have been placed below the outlets of Air Conditioners so that the water discharge from these outlets can be utilized properly.



9.5.3 National Webinar on Water Conservation

A. World Environment Day was observed by organizing a two-day National Webinar on 6-7 June, 2021 with the theme "Ecosystem Restoration" wherein resource persons across the nation drew the attention of the audience towards the alarming consequences of uneconomical use of water and water pollution. They emphasized restoring the ecosystem by aiming to 'use minimum and give maximum'. More than 500 participants from 12 states attended the Webinar and got benefitted from the lecture series and attained new insights on the issue after brainstorming discussions with highly esteemed experts of many diverse fields.

- Auditing for Waste Management of the institute for Environmental Consciousness and Sustainability.
- Waste Management steps including:

 Solid waste

 management

 Liquid waste management
 E-waste

 management

10. WASTE MANAGEMENT

This indicator addresses waste production and disposal, plastic waste, paper waste, food waste, and recycling. Municipal solid waste has a number of adverse environmental impacts, most of which are well known and not in need of elaboration. To reduce waste at institute, students and staff are educated on proper waste management practices through lectures, advertisement on notice boards, displaying slogan boards in the campus.

Waste is collected on a daily basis from various sources and is separated as **dry** and wet waste. Colour coded dustbins are used for different types of wastes. Green for wet and blue for solid waste.

Daily garbage is collected by housekeeping personnel and handed over to authorized personnel of Municipal Corporation, Durg for further processing.

10.1 Solid Waste management

Solid waste can be divided into two categories: general waste and hazardous waste. General waste includes what is usually thrown away in homes and schools such as paper, plastics tins and glass bottles. Hazardous waste is waste that is likely to be a threat to one's health or the environment like cleaning chemicals and petrol. Small bucket and big buckets are used for solid waste.

Small Plastic bucket = 40 Nos.

Big Plastic Bucket = 20 Nos.

Total Production of Solid Waste (Bio degradable) : 2-10 Kg

Total Production of Solid Waste (Non Bio degradable): Less than 1 Kg

College also have two numbers of Napkins/Wending/Burning Machine

10.1.1 Non Bio degradable Waste – Plastic Bottles / Waste Paper etc.

 Non- biodegradable are those waste, which cannot be decomposed by biological processes. These are of two types - Recyclable: waste having economic values but destined for disposal can be recovered and reused along with their energy value. e.g. Plastic, paper, old cloth etc. Non-recyclable: waste which do not have economic value of recovery. e.g. Carbon paper, thermocol,

tetra packs etc. Disposal of non-biodegradable waste is a major concern, not just plastic, a variety of waste being accumulated. There are a few ways to help non-biodegradable waste management. The impact of non-biodegradable waste on the environment and also focus on its safe disposal for sustainable environment.

Waste material like plastic, papers etc. are collected and sold out to scrap vendor from time to time.

 College has also planned for compost pit to produce compost manure from the canteen solid waste and waste from other sources. Manure will be used for the purpose of botanical garden, Swami Vivekanand Garden, herbal garden as well or for planted tree.

10.2 Liquid waste management:

The waste chemicals mixed water from laboratory should not be mixed with ground water. Labs are bringing to adopt fully or to minimize hazardous chemical.

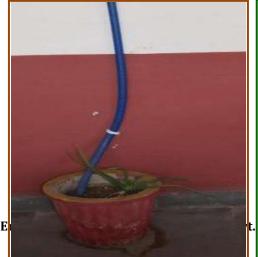
10.2.1 Re-use of waste water

Waste water discharge from the canteen
Is directed to a small tank (Oxidation pond)
named Lotus tank. It is surrounded by a wire
mesh. The tank contains a variety of eye
catching aquatic plants. Water of this pond is
used to irrigate the nearby seasonal plant
beds.

a.Re-use of waste water from surrounding area

A temporary pond has been constructed beside the girls hostel to collect the water from Railway washing yard located near the college campus. The pond serve as a recharge point source for underground water as well as while some of it is used for on-site construction and irrigation of plants spread across the college campus.

b. Re-use of impure wastewater from water purifiers,


Impure drinking water is one of the main sources of infection, even mild poisoning, in many cases. Hence, it is important to use water purifiers in college campus. About 16 water purifiers are installed at various sites throughout the college campus. Waste water from these purifier outlets is used to water various indoor and outdoor plants to ensure least water wastage and beautification of

the campus.

c. Re-use of waste water from Air Conditioners

Potted plants have been placed below the outlets of Air Conditioners so that the water discharge from these outlets can be utilized properly.

Energy Audit, E

Page 48

10.3 E-Waste Management

Waste Electrical and Electronic Equipment (WEEE) or E-waste is one of the fastest growing waste streams in the world. In developed countries, it equals 1% of total solid waste on an average.

In developing countries, it ranges from 0.01% to 1% of the total municipal solid waste generation. In countries like China and India, though annual generation per capita is less than 1 kg, it is growing at an exponential pace. Presently, a very small amount of E waste from offices and glass waste from labs is generated in College.

The E-waste collected is stored in store room and disposed every year by selling it to vendors .

The total e-waste kept in college is about 30 Kg.

The Level of disturbance it creates for the college in a scale 1 to 9.

SI.	Area	Rating
No.		
1	Municipal Dump Yard	9
2	Garbage heap	9
3	Sewer line	8
4	Stagnant water	9
5	Open drainage	7
6	Industry	No
7	Bus/Railway station	1
8	Market/shopping complex/	3
	Public halls	

10.4 Environment Management Policy: Leading the way to a cleaner and healthier Environment

- Reducing degradable and non-degradable waste in the campus
- Reducing pollution through gases, heat, odor, chemicals and hazardous microorganisms
- Reducing water consumption and wastage
- Appropriate training to staff and students for environmental awareness through academic programmes and campus awareness initiatives
- Facilitation of research in sustainability

Identification And Evaluation of Environmental Aspects and Associated Impacts:

Activity	Aspect		Risk		Effe	ect on	recep	tion	Impact		
		L	evel	s*							
		P	D	A	EH	EA	EW	EL			
Department of Physics &	& Computer Sci	enc	e								
Running of electrical, electronic and heat radiating instruments	Electrical consumption, heat radiation, Generation of electronic waste	5	1	1	-	V	-	1	Air and Land Pollution		
Department of Chemistr	ry										
Experiments on Chemical reactions	Generation of fumes and chemical waste	5	5	5	V	V	V		Effect on health, Air, Water and Land pollution		
Storage of strong chemicals and Acids	Leakage of gases and out flow of chemicals	5	3	1	V	V	1	-	Air pollution		
LPG for burners in laboratories	Generation of heat	5	3	3	$\sqrt{}$	V	-	-	Air pollution		
Use of Glass wares	Chances of breakage and generation of	5	3	1	V	-	-	V	Land pollution		

	waste								
Running of electrical, and heat, vibration and noise generating instruments	Electrical consumption, heat radiation, generation of noise	5	4	2	1	1	•	-	Air and Noise pollution
Department of Botany		1		1			. /		T 1 11
Experiments on Plants	Generation of waste	4	2	1	-	-	٧	V	Land pollution
Use of Glass wares and plastic wares	Chances of breakage and generation of waste	5	3	1	√	-	ı	~	Land pollution
Use of chemicals and reagents during experiments	Generation of waste water with spent chemicals	5	3	3	-	-	V	V	Water and Land pollution
Department of Zoology									
Experiments leading to staining and preservation of animal parts	Generation of waste water with spent chemicals	5	3	3	-	-	√	V	Water and Land pollution
Experiments on animal cells like blood, fish scales, skin peelings, saliva etc.	Generation of liquid waste	5	3	1	1	-	~	$\sqrt{}$	Water and Land pollution
Department of Microbio	ology								
Experiments on living Microorganisms	Generation of infectious propagules	5	3	3	V	V	V	V	Effect on health, Air, Water and Land pollution
Use of strong chemicals, reagents and media ingrediants for washing and disinfection	Generation of aerosol and release of liquid waste	3	2	2	V	V	V	V	Air, Water and Land pollution
Preservation and	Generation of aerosol	3	2	1	$\sqrt{}$	$\sqrt{}$	-	-	Air pollution

maintenance of pure											
cultures of											
microorganisms											
Use of Glass wares,	Chances of	5	3	1	√	-	-	√	Land pollution		
plastic wares, cotton,	breakage and								-		
aluminium foil and	generation of										
disposable tools	solid waste										
Department of Biotechnology											
Experiments on plants,	Generation of	3	1	1	l _	_	_	V	Land pollution		
animals and	waste		_	-				·	Zama ponamon		
microorganisms											
	Generation of	3	1	1	V		V	√	Effect on health and		
Use of carcinogenic	insecure	3	1	1	V	-	V	V			
chemicals like ETBr,	waste								Land pollution		
Silica gel, Glass wool											
for experiments											
Use of Glass wares,	Chances of	5	3	1	√	-	-		Land pollution		
plastic wares and	breakage and generation of										
disposable tools	waste										
Use of strong chemicals	Generation of	3	2	2	√	√	1	V	Air, Water and Land		
for washing and	aerosol								pollution		
disinfection											
Department of Geology											
Preparation of thin	Generation of	3	3	3	V	V	V	V	Air, Water and Land		
sections of rocks and	dust, sound								pollution		
minerals Coolegies averaging	and vibration	3	3	1					Consention		
Geological excursion and field work for	Accumulation of plastic	3	3	1	-	-	-	$\sqrt{}$	Generation of Degradable and		
collection and	bags and								Non- degradable		
preservation of museum	place								solid waste, Land		
specimens	congestion								pollution		
Departments of Arts, So				e &	Math	emati	ics				
Maintenance of files	Generation of	1	1	1	-	-	-	V	Generation of		
and registers	Paper waste								degradable Solid Waste, Land		
									·		
Department of Library Science Pollution											

Maintenance of	Generation of	2	3	2	$\sqrt{}$	$\sqrt{}$	-	$\sqrt{}$	Air	and	land				
reference books,	paper waste								Polluti	on					
Catalogues and files and	and dust														
registers; Footfall of	aerosol														
students and staff															
All departments including	ng office														
Use of computer,	Electrical	4	2	2	$\sqrt{}$		V		Ger	neration	of e				
laptops and Wi-Fi,	consumption,								Wast	e causin	g Air				
Running of	Generation of														
refrigerators, Deep	electronic								and L	and Pol	lution				
refrigerators and Air	waste and														
conditioners	Heat														
P – Probability of occur	rence			EH – Effect on Human											
D – Duration of occurrence				E	EA – Effect on Air										
A – Area of influence				E	EW – Effect on Water										
									EL – Effect on Land						

Table: 25: Identification And Evaluation of Environmental Aspects and Associated Impacts

*Risk levels: 1-5 Mild to Very High

10.5. Corrective Measure Adopted by Departments & Offices

Department	Measures adopted	Impression
Physics	Use of energy conservation devises, Promotion of paper less work, Reduction in e-waste	Safety during experimentation, power saving, reduction in solid waste
Chemistry	Compulsion of lab coats, Installation of exhaust fans in laboratory, provision of fume hoods for sensitive experiments, Wooden and stone-based storage cabinets, annual maintenance of gas pipe lines and exhaust fans, diffusion of aerosols into liquid chambers to minimize the thresholds, regeneration of Silver from waste silver chloride collected during experiments	experimentation, rapid removal of troubling exhausts, limited spread of smokes, slowdown of metal corrosion, no leakage of gas, reduction in diffusion of unwanted
Botany	Timely disposal of spent materials, periodic cleaning and disinfection of tools, equipment and microscope,	Limited accumulation of waste, limited risk of health hazards
Zoology	Use of lab coats during experiments, land filling of animal waste and neutralization of strong chemicals before release in the environment	Restricted accumulation of waste, limited risk of health hazards
Geology	Separate chambers for thin section preparation during experiments, Minimal use of plastic bags and proper	

	disposal after use	
Microbiology	disposal after use Compulsion of Lab coats and hand gloves during experiments, use of biosafety cabinets during microbial transfer, Separate storage compartments for bacteria and fungi, Separate area for decontamination and washing, periodic cleaning and disinfection of working area, microscopes, deep refrigerators and incubators	Safety and protection during experimentation, Reduction of generation of microbial aerosol, less chances of cross contamination during experiments, limited risk of health hazards
Biotechnology	Compulsion of Lab coats and hand gloves during experiments, use of biosafety cabinets during microbial transfer, Separate storage compartments for bacteria and fungi, well defined area for germplasm storage, Separate area for decontamination and washing, land filling of unsafe materials, periodic cleaning and disinfection of microscopes, deep refrigerators and incubators.	Safety during experimentation, Reduction of generation of microbial aerosol, less chances of cross contamination during experiments, limited risk of health hazards
Arts, Social science, Commerce & Mathematics	Segregation of paper and disposable plastic waste in separate bins and daily transfer to landfill area.	Reduction in the accumulated waste
Library Science	Continuous running of exhaust fans, consistent dusting and sweeping through vacuum cleaners, regular disposal of paper waste	Reduction of aerosol generation, reduced damage due to insect pests, limited risk of health hazard

Measures Adopted	Impression		
a) Organization of awareness	a) Acquiring the knowledge and		
campaigns and promotion of green	importance of environment, ensuing		
attitude through physical displays,	environmental protection rules,		
awareness lectures	development of necessary environmental		
	and health related skills, and values,		
	understanding the concept of grey water		
	and continuous education to focus		
	Reduce, Reuse & Recycle		
b) Regular plantation, maintenance of	b) Sustenance of Green environment in		

plants having air purification properties are preferred near conference room and laboratories.

- C) Introduction of uniform solid waste management system through segregation bins and landfills.
- d) Provision of sanitary napkin dispensers in girl's common room and efficient disposal of waste through incinerators
- e) Regular monitoring of overhead water storage PVC tanks for leakage, accumulation of water nearby and proper closure of lid
- f) Rain water harvesting for judicious utilization of natural water resource through channelization of roof top rain water for ground water recharge.
- g) Safe and systematic management of laboratory waste through neutralization of strong acids and alkali before draining, cooking out infectious prop gules before disposing

of

e-waste

from

Collection

h)

departments and selling in the scrap market through proper channel. Periodic collection of valued answer books, student's practical files, home assignments and test papers and other paper waste from departments, written off books from library and selling in scrap market the campus

- c) Reduction in the amount of solid waste generated and environmental waste burden in the campus
- d) No accumulation of waste

- e)Effective and efficient use of efflux water for gardening, washing and mopping. No entry and accumulation for litter and overflowed water near overhead water tanks and rarer possibility of mosquito breeding around the area
- f) 'Catch the rain where it falls' supporting ground water recharge in support of water recycling
- g) Maintaining ecosystem balance

h) Selling paper waste and e-waste generate revenue for institution

 Green Campus Management and Carbon Footprint of the institute for Environmental Consciousness and Sustainability.

- Green Practices
- Students, staff using a) Bicycles b) Public Transport
 - c) Pedestrian friendly roads
- Plastic-free campus
- Paperless office
- Green landscaping with trees and plants

11. GREEN CAMPUS MANAGEMENT

All plant and animal species - including humans - are linked together in a complex web of life; we depend upon biodiversity for our survival. Biodiversity is the key to healthy ecosystems and ultimately a healthy planet. It keeps the air and water clean, regulates our climate and provides us food, shelter, clothing, medicine and other useful products. Each part within this complex web diminishes a little when one part weakens or disappears.

Area under green cover (in sq ft or in acre)	8.6 acre
Availability of Nursery on Campus (Yes / No)	Yes
Plant Protection Management	Yes
Number of plantations done in the year 2020-21	273
Extent of area (% of area) under tree cover	22%

Table 26: Green Area management

The trees work hard to keep the air we breathe clean and healthy. They are like sponges. Their leaves take in much of the poisonous unwanted carbon dioxide in the air, and replace it with the oxygen we need for healthy living. This system of absorbing gases on which all plants rely for their food is called photosynthesis. In this process, the plants with the help of sunlight, water, minerals and the green material called Chlorophyll within the leaves change the carbon-dioxide into food for themselves. When doing this they release oxygen into the air which is vital for all life on earth. At night when there is no sunlight the plant no longer makes food, so it does not release the same amount of oxygen.

One is often told not to sleep with plants in one's room, as they will use up all the oxygen. However, at night although photosynthesis does take place the plants also rest, so that little oxygen is absorbed from the air and very little harm can be done to the ones sleeping in the room

The roots of trees dig deep into the earth and hold it together so that the rain and wind cannot wash or blow it away. This is very important as the earth has only a very thin layer (seldom more than one foot) of fertile soil covering it. If this is washed, blown or worn away leaving rock or sand on which no plants can grow then the earth would become a desert. The removal of this top-soil is called soil erosion. Scientists, all over the world are trying to find ways to prevent soil erosion. One of the most important ways is creating by planting more trees.

Trees send up water vapour into the atmosphere through their leaves. When this vapour meets the cool air above it turns into drops of water which then fall as rain. They give us beauty, colour and greenery. This is something which we often forget and fail to appreciate. They are the homes of many birds, animals and insects. Each of these is important in maintaining the balance of nature.

11.1 Green Audit

Green Audit defined as documented, verification process of specified environmental activities, events, conditions, management system. Green Audit can create awareness in college staff as well as students which are our responsibility too, to save our environment and also can find the ways to improve environmental issues which are increasing day by day. Environmental problems such as recycling of waste, water conservation and recycling, pollution control, plantation, biodiversity conservation etc. can solve through Green Auditing. Good growth come from good education as well as good mental and physical health if we protect our environment, we can also protect our health.

Green Audit means of assessing environmental performance. It is a systematic documented periodic, and objective review by regulated entities of facility operations and practices related to meeting environmental requirement. It is otherwise the systematic examination of the interactions between any operation and its surroundings. This includes all emissions to air, land and water, legal constraints, the effects on the neighbouring community, landscape and ecology, the public's perception of the operating company in the local area. Green audit does not stop all compliance with legislation. Nor is it a 'green washing' public relations exercise. Rather it is a total strategic approach to the organisation's activities.

VISION

To empower the youth, especially belonging to the underprivileged sections of society, through quality education by inculcating philanthropic values and enabling them to meet the challenges of the contemporary knowledge society.

MISSION

To translate the vision into reality the institution is committed to -

- Embrace in its fold students from all sections and categories especially addressing to the needs of thefirst generations learner.
- Expose the students (especially the under-privileged ones) to variety of activities, academic and extra-academic, aiming at their overall development.
- Inculcate humanistic and social values in the students to motivate them towards community services.
- Kindle the entrepreneurial spirit in students.
- Inspire the young minds to develop the habits of critical thinking to achieve Creative Excellence.
- Promote quality research among the teachers and students.
- Sensitize the students on issues relating to ecology, environment, human rights and gender equality.
- Foster global competencies.

College Green Committee

The college Green committee was established in the college with a proactive attitude towards conservation of the environment and objective of generating awareness and promoting environmental care at both individual and community level. The committee aims to create a permeating atmosphere facilitating conversation, action and feedback on environmental issues engaging faculty, students and the general public. The institution looks at the macro- environmental perspective in the college and the society and envisions nurturing the environmentwith a greener future.

11.2 Green Campus Policy of College

Govt. V. Y. T. PG. Autonomous College, Durg is committed to develop its campuses as places where education is combined with environmental friendly practices to promote Sustainable Development by o restricted entry of automobiles, promoting the use of Bicycles and provision of Pedestrian Friendly pathways e ban on use of disposable Plastics in line with the State

Government Guidelines. creating awareness with stakeholders on the need for maintaining greenery in the campus for sustainable ambience.

encouraging all stakeholders to support and participate in ensuring green cover in the campus. o preserving age old trees and protect them to have prolonged life. enhancement of green cover by landscaping with trees and plants. conduct of green audit at regular intervals and implement the suggestions towards creating green campus. The faculty, staff and students are encouraged to contribute collectively to develop an eco-friendly sustainable campus and disseminate the concept of eco friendly culture to the nearby community and wherever possible.

Govt. V. Y. T. PG. Autonomous College, Durg envisions a clean and green university campus where ecological friendly practices and education combine to encourage sustainable and eco-friendly systems in the campus and beyond the campus. The green campus offers the organization a prospect to take the lead in redefining its green culture through promoting environmental ethics among students and staff The Institute also promotes clean and green campus through adopting, practicing and promoting environmentally friendly practices among students and staff to generate Eco consciousness among them and in the world around them.

Objectives of the policy: To compose students by understanding the importance of environment and its problem areas Important function of the policy.

- To train students to create responsiveness amongst public.
- To encourage students to keep environment safe and clean.
- To encourage students to adopt environment friendly practices which include paper bags, save.

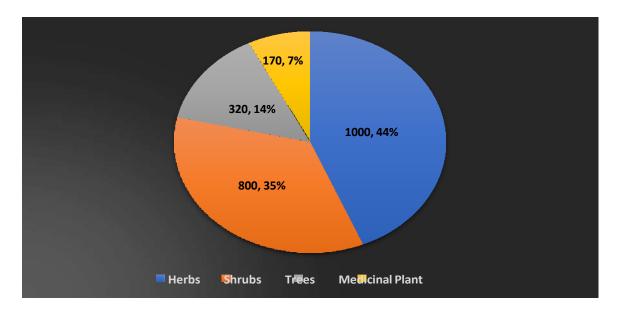
• To help the students to minimize the use of polluting product.

Why Green Audit

The excessive environmental degradation is creating the "Environmental poverty". Thus, academic leaders should initiate the knowledge and benefits of resources so that their institutions respond to environmental issues and challenges. We believe that there is an urgent need to address these problems and reverse the trends of environment degradation.

OBJECTIVES -

- To assess environmental performance
- To promote environmental awareness
- To improve health
- To conserve resources
- To reduce waste
- To improve environmental standards
- To sustainable use of natural resources
- To develop responsibility about environment
- To enhance college profile


PLANTATION -

To create Environmental awareness at the college campus we organize plantation program with all the staffs and students of our college. We try to plant more trees. To keep the greeneries in the campus we maintain the garden by paid staff under the guidance of garden committee members.

To create- green cover, eco-friendly atmosphere, pure oxygen at the college campus, plantation program is organized every year with involving all students, principal, and all departments faculty members. In this session van mahotsav program was organized and about 100 ornamental, avenue,

medicinal plant with rare and exotic beautiful trees was planted in botanical garden and other parts of college campus. To keep the greeneries in the campus, we regularly maintain the gardens which are looked after by paid staff under the guidance of garden committee members. Moreover, every year we try to plant new trees. Seasonal flower garden is also a unique feature of this college. There are so many plants are present in our college campus categorized below-

Category	Numbers (Approx.)
Herbs	1000
Shrubs	800
Trees	320
Medicinal Plant	170

IDENTIFICATION OF PLANT SPECIES:

There are so many plant species are present at college campus. The faculty member of thebotany department audited and identified of various plant

11.3 List Of The Plants Audited

S.No	Scientific Plant	Local Name	Family	Uses	Nos.
•					
1	Acacia melanoxylon	Australian acacia	Mimosaceae	Social Forestry	1
2	Albizzia lebbeck	Siris (Black)	Mimosaceae	Avenue Timber, Bronchitis,Tree, Skin,	4
3	Alstoniascholari s	Chhatim	Apocynaceae	Avenue Malaria, Tree,	27
4	Anthocephalus cadamba	Cadam	Rubiaceae	Avenue Aesthetic, Tree	1
5	Azadiracta indica	Neem	Meliaceae	Avenue Tree,Skin,	15
6	Bauhania variegate	Kachnar	Ceasalpiniaceae	Avenue Ornamental Tree	1
7	Bixa orellana	Sinduri	Bixaceae	Industrial Food	1
8	Cassia fistula	Amaltas	Ceasalpiniaceae	Avenue Tree, Laxative	27
9	Cassia siamea	Chakundi	Ceasalpiniaceae	Avenue Tree, Ornamental	2
10	Casuarina equisetifolia	Jhau	Cauarinaceae	Social Forestry, Diarrhea	2
11	Cocos nucifera	Narial	Palmaceae	Fruit Edible	1
12	Dalbergia sissoo	Sheesham	Papilionaceae	Avenue Tree, Timber,	31
13	Delonix regia	Gulmohar	Caesalpiniaceae	Avenue Tree, Ornamental	6
14	Emblica officinalis	Amala	Euphorbiaceae	Triphla, Skin,Tannins	2
15	Ficus bengalensis	Bargad	Moraceae	Avenue Tree, Aesthatic	3
16	Jacaranda mimosifolia	NilaGulmoh ar	Bignoniaceae	Ornamental	2
17	Leucaena leucocephala	Shubabul	Mimosaceae	Social Forestry, Fodder	14
18	Mangifera indica	Aam	Anacardiaceae	Avenue Tree, Fruit Edible, Timber	3

19	Mimusopselengi	Maulsiri	Sapotaceae	Avenue Tree, Ornamental	2
20	Moringa oleifera	Munaga	Moringaceae	Blood Pressure, Fruit Vegetable	1
21	Nyctanthesarbo r-tristis	Harsingar	Oleaceae	Ornamental, Diabetic	1
22	Peltophorumferr ugineum	Copper Pod	Caesalpiniaceae	Avenue Tree, Ornamental, Social Forestry	40
23	Pithecolobium dulce	Ganga Emli	Mimosaceae	Hedge,Fruit Edible	6
24	Plumeria alba	Temple Tree (Champa)	Apocynaceae	Ornamental	5
25	Polyanthia Iongifolia	Ashok	Annonaceae	Avenue Tree, Ornamental	6
26	Pongamia pinnata	Karanj	Papilionaceae	Avenue, Insecticide, Skin	28
27	Syzygiumcuminii	Jamun	Myrtaceae	Avenue, Diabetes, Fruit Edible, Timber	1
28	Tabebuia rosea	Trumpet Tree	Bignoniaceae	Ornamental	1
29	Tabernaemont ana coronaria	Chandni	Apocynaceae	Ornamental	2
30	Tamarindus indica	Imli	Caesalpiniaceae	Avenue, Fruit Editable	3
31	Tecoma stans	Yellow Bell	Bignoniaceae	Ornamental	10
32	Tectona grandis	Sagon	Verbenaceae	Furniture Of best Quality	4
33	Thevetia peruviana	Pili Kaner	Apocynaceae	Ornamental, Aesthetic	12
34	Zizyphus jujube	Ber	Rhamnaceae	Fruit Edible, Fodder	4

Medicinal Plants

S.No.	Scientific Name of Plant	Local Name	Family	Uses	Nos
1	Adhatoda vasia	Adusa	Acanthaceae	Espectorent	11
2	Aloe vera	Ghee Kwar	Liliaceae	Fever, Constipation, Piles, Skin, Jaundice, Leprosy	16

3	Andrographis paniculata	Kirayat	Acanthaceae	Fever, Dysentry, Dyspepsia, Stomachic	27
4	Asparagus racemosus	Satawar	Liliaceae	Tonic, Dysentry, Leprosy, T.B., Night Blindness	5
5	Catharanthes roseus	SadaSuhagan	Apocynaceae	Leukemia,Diabetic	22
6	Cymbopogon citrates	Lemon Grass	Poaceae	Bronchitis, Fever, Rheumatism, Leprosy	26
7	Gymnema sylvestre	Gurmar	Asclepiadacea e	Diabetic, Ulcer, Bronchitis, Piles, Snake Bite	11
8	Oscimum sanctum	Tulsi	Lamiaceae	Asthma, Bronchitis, Vomating, Malaria, Ring Worm	14
9	Rauwolfia serpentine	Sarpgandha	Apocynaceae	High Blood Pressure, Sebative, Mental Disorder, Anti- Microbial	12
10	Tinospora cordifolia	Giloey	Menispermac eae	Diabetic, Tonic	2
11	Vitis quadriangularis	Harjod	Vitaceae	Joint and Bone Health	2
12	Withania somnifera	Ashwagandh a	Solanaceae	Asthma Bronchitis Arthritis, Rheumatism, Leucoderma	5

Table: 27: List of the plant audited.

Particulars of Flora	Numbers
Full grown Tree	675
Semi Grown Tree	250
Quarter grown plants	128

Table 28 : Type and quantity of flora

11.4 Carbon Footprint

A carbon footprint is the amount of greenhouse gases—primarily carbon dioxide— released into the atmosphere by an individual, event, organization, service, or product, expressed as carbon dioxide equivalent. In addition to the water, waste, energy and biodiversity audits we can also determine what our carbon footprint is, based on the amount of carbon emissions created. The release of carbon dioxide gas into the Earth's atmosphere through human activities is commonly known as carbon emissions.

An important aspect of doing an audit is to be able to measure our impact so that we can determine better ways to manage the impact. In addition to the water, waste, energy and biodiversity audits we can also determine what our carbon footprint is, based on the amount of carbon emissions created.

- A) The following activity/utility is responsible for carbon emission:-
- Transportation
- Electricity purchased from Distribution companies.

11.4.1 Carbon Emission by Transportation

Principal, Administrator, teaching & non-teaching staff and students comes to college either by two wheelers & four wheelers. The two major fuels used by the transport sector are petrol and diesel. These fuels are carbon intensive as they contain 80-85% of carbon by weight.

SI. No.	Fuel Used	Types of Transport	Persons	Numbers of Persons	Nos. of Vehicle Used	B mileage	Av. distance in KM	D= C/B Fuel Consum ed per Day per Vehicle in Itr	Total working days	F=E x D Petrol Consumption Per Vehicle in a year	G Emission factor	H=G x F x A Total emission
1	No Fuel	Bicycle	Students Non Teaching	2500 13	2500 13							
0	Datast	Torre	Staff	400	500	40	00	0.5	17/	00	0.47	1,40077
2	Petrol	Two Wheeler	Students Non Teaching	600 75	500 75	40	30	0.5	176 176	88 132	2.67	140976 26433
			Staff									
			Teaching Staff	40	40	40	20	0.5	176	88	2.67	9398
3	Petrol	Four Wheeler	Teaching Staff	65	65	15	20	1.33	176	234.1	2.67	40628
4	Diesel	Auto	Students	900	225	25	30	1.2	176	211.2	2.67	507514
		Bus	Students	860	50	6	40	6.67	176	1174	2.67	2695739
			Teaching Staff	5	2	6	60	10	176	1760	2.67	23496
Tota								3444184				

Table 29: Carbon emission by transport

Thus, total emission by the transport is 2,37.559 KG CO₂ eq. Per year

11.4.2 Carbon Emission by Electricity

Electricity is taken by grid which uses coal for generating electricity or DG set which uses diesel for electricity generation.

Parameter	Emission Factor (A)	Unit in KWH (B)	Total emission (C= A x B)
Grid Electricity	0.82	159256	130590
Tota	130590		

Table 30: Carbon Emission by Electricity

Thus, total emission by purchased electricity is 1,30,590 KgCO_{2Eq.}

Total Carbon dioxide emission at Govt. VYT PG Autonomous College, Durg

Area CO2 eq. emission in KG	
Electricity	130,590
Transport	3444184
Total	3,574,774

Table 31: Total Carbon dioxide emission at Govt. VYT PG Autonomous College

11.5 Reduction of Carbon Emission

- **B)** The following installation /activity is responsible for reduction in carbon emission:-
- Off grid Solar Power Plant of 10 KW Capacity
- Composting
- Tree plantation

11.5.1 Reduction of Carbon Emission by Solar Power Plant

The solar power plant has generated 63,622 unit from renewable sources in the year 2019-2020. If it is not generated from solar then it would be purchased from electricity distribution companies which will produced from burning of coals in thermal power plant, which causes carbon dioxide emission.

Parameter	Emission Factor	Unit in KWH	Total reduction of emission
Solar Power			
Plant	0.82	4325	3547

Table 32 Reduction of Carbon Emission by Solar Power Plant

Thus, solar power plant has reduced 19,680 KG of CO₂eq. Per year.

11.5.2 Reduction of Carbon Emission due to absorption of CO₂ by Tree Plantation

Planting is a great way to help sequester carbon emissions. Through photosynthesis <u>trees absorb carbon dioxide to produce oxygen, food and</u> wood.

Particulars of Flora	Numbers	Carbon absorption by one tree Per year	Total Carbon Di Oxide in Kg
Full grown Tree	675	6.8	4590
Semi Grown Tree	250	3.4	850
Quarter grown plants	128	1.7	218
Total Carbon dioxide absorption by trees			5658

Table 33: Carbon absorption by tree plantation.

11.5.3 Total Reduction in Carbon dioxide emission at Govt. VYT PG Autonomous College, Durg Campus

Area	Reduction in CO2 eq. emission in KG
Solar	3547
Trees	5658
Total	9205

Table 34: Total Reduction in Carbon dioxide emission

12. RECOMMENDATIONS

12.1Formation of ENCON Club:

We recommend to formation of the ENCON Club in Govt. VYT PG Autonomous College Durg for spreading awareness on the importance of energy conservation. ENCON Club will participate in all energy conservation activities and organize program with the support of Chhattisgarh State Renewable Energy Development Agency, (CREDA) Raipur and Bureau of Energy Efficiency, (BEE) New Delhi.

Every year, India observes National Energy Conservation on December 14. The day is organized by the Bureau of Energy Efficiency (BEE) – which operates under the Ministry of Power, aiming to present India's stellar achievements in cost-efficient energy production and resource conservation.

ENCON Club will celebrate "Energy Conservation Day" on 14Th December, each year. Further plans for the future may be discussed on this day, targeting holistic development as the main goal towards mitigation of climate change. It would not only help in imparting knowledge on energy efficiency but also in its implementation in households and institutions.

Objective of ENCON Club

The objective of the club is to create awareness among the students, staff and teachers and equip them for efficient management of all forms of energy, to promote energy efficiency and energy conservation. The club will keen to spread "Energy Conservation Messages" in the society by conducting awareness programmes to students and public.

12.2Replacement of all conventional tube light will replaced by energy efficient LED tube light:

Govt. VYT PG Autonomous College, Durg is replacing conventional tube light with LED light fittings. However, still 671 numbers of conventional tube lights are remain to be replaced. Replacement of tube light by energy efficient LED tube light will not only saves electricity consumption but also saves CO2 emission directly and indirectly.

Wattage of conventional Tube light including choke	50
Wattage of LED tube light	22
Saving in wattage	28
Quantity	671
Saving in connectd load in KW	18.788
Average Operating hours	7
No. of days in operation	210
Annual saving in unit consumption	27618
Energy Cost in Rs. Per unit	7.5
Total annual monitory saving in Rs.	207135
Price of one LED 22 Watt tube light	350
Total Investment	234850
Simple Payback period	14 months

Table 35: Replacement of all conventional tube light will replaced by energy efficient LED tube light

The total investment is about Rs. 2,07,135 and simple payback period is about 14 months

12.3Replacement of all conventional fans by 28 watt energy efficient fans.

In college, conventional fans are installed. We have recommended to use Energy Efficient Fan in college building. All 1435 conventional fans (70 W) shall be replaced by 28 watt energy efficient fans. The total saving of this energy conservation measure is about 6.37 lakh per annum and total investment is about 45.92 lakh. The simple payback period is 87 months.

Wattage of conventional fan	75
Wattage of Energy Efficient Gorilla Fan	28
Saving in wattage	47
Quantity	1435
Operating hours	6
No. of days in operation	210
Annual saving in unit consumption	84981
Energy Cost in Rs. Per unit	7.5
Total annual monitory saving in Rs.	6,37,358
Price of one LED 22 Watt tube light	3200
Total Investment	45,92,000
Simple Payback period	87 months

Table 36: Replacement of all conventional fans by 28 watt energy efficient fans

Technical Description

Energy Efficient Gorilla Fan/ Super fan

Every energy efficient Gorilla/Super fan uses BLDC (Brushless Direct Current) motor. BLDC motor has no mechanical brush for commutation of the windings. Commutation is deployed with the help of smart electronics. As a result the fan runs internally at 24V and consumes just 28 W at full speed.

Key features of BLDC design:

- Extremely low heat & associated power loss
- Better flexibility over controlling motor speed
- Smart motor tuning algorithm
- No spark and minimal electrical noise
- Sensor less design
- A BLDC fan takes in AC voltage and internally converts it into DC using SMPS.
- The main difference between BLDC and ordinary DC fans is the commutation method. A commutation is basically the technique of changing the direction of current in the motor for the rotational movement. In a BLDC motor, as there are no brushes so the commutation is done by the driving algorithm in the Electronics. The main advantage is that over a period of time, due to mechanical contact in a brushed motor the commutators can undergo wear and tear, this thing is eliminated in BLDC Motor making the motor more rugged for long-term use.

Figure 8: BLDC motor of Energy Efficient fan

- To explain, BLDC technology in simpler terms, BLDC uses a combination of Permanent Magnets and Electronics to achieve the kind of efficiency and performance it delivers. A BLDC fan composes of 3 main components:
- 1.Stator
 - 2.Rotor
 - 3. Electronics.

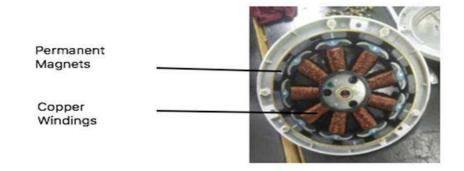


Figure 16: Inside view of BLDC motor

- The electronics contains a driving algorithm which drives the BLDC motor. As discussed earlier in a BLDC motor the position of magnets in the fan is sensed by electronics that either uses a Hall effect sensor or back EMF. Modern BLDC motors use Back EMF for commutation due to proven disadvantages of hall effect sensor over period of time.
- To explain it in easier terms, we can take an example of a donkey who has a carrot fixed over his head as per shown in the picture below:
- Consider the Stator to be the Carrot and the donkey to be the Magnets.
 The polarity of the stator will keep changing, due to attraction the

magnets will create rotational moment, just like how the donkey tries hard to reach the carrot in the picture.

- Permanent magnets used in rotor are responsible for mass reduction in power consumption compared to windings used in the stator in an ordinary induction fan. One added advantage in a BLDC fans due to use of an electronic circuit is that you can add several additional features to increase convenience, few example of the same are sleep mode, timer mode also it is compatible with Home automation systems. Most of the BLDC Ceiling fans are operated by remote unlike traditional regulator reducing the purchase cost of regulator.
- Compared to regular induction fan, a BLDC fan can save up to Rs 1000-1500/ Year/fan. And because there is no heating of the motor, the life of a BLDC fan is also expected to be much higher than ordinary fans.

12.4Dust cleaning on Solar Photo Voltaic Modules Surface

The degree of efficiency deterioration depends on the specific mass and Size of dust particles deposition on PV module surface. As the mass of dust deposition increases, power output and the efficiency of the module decrease, and as the size becomes smaller, power output decreases as smaller particles block more radiation on PV module surface. The different pollutant depositions may include red soil, ash, sand, calcium carbonate, silica, etc. The presence of air pollution may significantly deteriorate the energy yield of PV panels; even after a short period of the panels' outdoor exposure

(e.g., 2 months) without cleaning, it may cause a decrement of 6.5% in energy production approximately

12.5 Installation of Grid connected Solar Roof top system on the roof top of college

Solar Roof Top Grid Connected Solar Power Plant

In a solar rooftop system, the solar panels are installed in the roof of any residential, institutional, social, Government, commercial, industrial buildings etc. This can be of two types

- a) Solar Rooftop System with storage facility using battery,
- b) Grid Connected Solar Rooftop System.

In grid connected rooftop or small SPV system, the DC power generated from SPV panel is converted to AC power using power conditioning unit/Inverter and is fed to the grid either of 440/220 Volt three/single phase line or of 33 kV/11 kV three phase lines depending on the capacity of the system installed at residential, institution/commercial establishment and the regulatory framework specified for respective States. These systems generate power during the day time which is utilized by powering captive loads and feed excess power to the grid as long as grid is available. In case, where solar power is not sufficient due to cloud cover etc., the captive loads are served by drawing balance power from the grid.

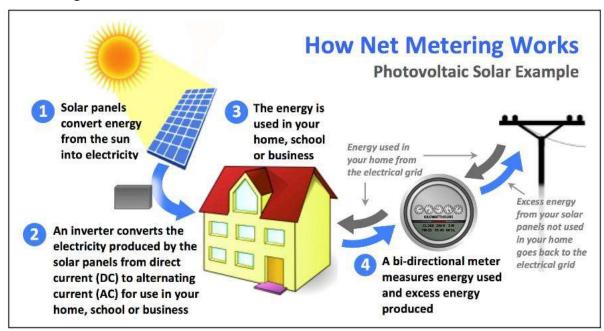


Figure 9: How Net Metering works

Main components of Solar rooftop system

- Solar PV Modules/Solar Panels The Solar PV modules/Solar Panels convert solar energy to electrical energy. They are available in different technologies such as crystalline, thin film, CIGS, CdTe, HIT, etc. Crystalline Solar PV panels are most common in use on roof tops.
- Inverter Inverter converts DC output of Solar PV panels into AC power.
- Mounting structure The mounting structure, is the support structure that holds the Solar PV panels
- Balance of System These consist of cables, switchboards, junction boxes, meters, structures, tracking system (if required), earthing system, circuit breaker, fuses etc.

Models for implementation of Rooftop PV systems

CAPEX Model: Here, the entire system is owned by the rooftop owners and he bears the cost of the Soalr system. Responsibility of O&M for the system lifetime (25 years) is also with the rooftop owner. Developer is responsible for installing the system and initial 2 years O&M and five years warranty.

RESCO Model: Here, the entire system is owned by the developer. Responsibility of O&M for the system lifetime (say about 25 years) is also with the developer. Rooftop owners may consume the electricity generated, for which they have to pay a pre-decided tariff on a monthly basis. Excess generation may be exported to the grid, subject to availability of requisite state regulations.

For consumers that have adequate manpower/expertise for O&M, rooftop access concerns, availability of funds upfront, CAPEX model is better. Consumers in states that have net metering regulations can take benefit of the same in case they have substantial excess generation.

On the other hand, consumers who prefer not to take responsibility for the system O&M, do not have rooftop security concerns and prefer to pay on a monthly basis rather than bulk upfront payment may choose to go for RESCO model.

Net Metering

The grid connected rooftop system can work on net metering basis wherein the beneficiary pays to the utility on net meter reading basis only. Alternatively two meters can also be installed to measure the export and import of power separately. The mechanism based on gross metering at mutually agreed tariff can also be adopted.

Figure 10: A Solar roof top system

We are recommending 50 KW of grid connected solar power plant.

12.6Enhancement of Energy Efficacy of light fittings:

Cleaning of tube-lights/bulbs to be done periodically, to remove dust over It. It affects on lamp efficacy (Im/watt).

12.1General Recommendation for Energy Saving in Office Equipment

Equipment	Wattage	Comments
CRT Monitor	100 - 120W (during operating condition)	CRT monitors consume a lot of power, much of which is wasted as heat, and represent the largest power consumption component in a typical desktop computer. Emit potentially harmful radiation. Fortunately, most CRT monitors these days are legacy equipment as new computers are generally supplied with LCD monitors. Unfortunately, most CRT monitors end up in landfill.
Desktop Computer	150W (during operating condition)	Power consumption will differ significantly depending on whether a CRT or LCD monitor is used. In home and office situations where it is necessary to run multiple desktop computers, it may be possible to make significant power savings by running a single terminal server computer with several LCD monitors and keyboards attached. Terminal server computers can also greatly simplify network management, software upgrades, etc
Photo copier	7-30W (Sl. Mode) 40-300W (Standby) 200- 1300W (op. condition)	Most of the energy used in a photocopier is consumed by the hot rollers, which are usually kept hot on standbay, consuming from 40-300W. Significant energy savings (40% to 60%) can be made by ensuring that photocopiers are switched off at night and on weekends. Some photocopiers consume up to 30 watts even when switched off, so photo copiers should be switched off at the power outlet to ensure they are really "off".
LCD Monitor	30-50W (during operating condition)	LCD monitors typically require about 30% of the power required for a CRT monitor with the same screen area. In addition, the amount of heat generated by an LCD monitor is considerably less than a CRT monitor, resulting in a lower load on ACs. Building cooling needs may be decreased by up to 20%.

Inkjet	120W	Inkjet printers use relatively little power in comparison to
Printer	(during	laser printers. From an energy consumption point of
	operating	view, inkjets are preferable to lasers. Unfortunately, they
	condition)	typically cost more to un on a cost -Per -print basis and
		sometimes produce less than optimum results
Laser	25-80W	Laser printers consume significant amounts of power
Printer	(Standby)	even when in standby mode. Over the course of an 8 -
	150-	10 hr working day, a laser printer could consume
	1100W	around 1kWh of energy. On the other hand, laser
	(during	printers are cheaper to run on a cost-per page basis
	operating	and generally produce better results. Both the number
	condition)	of laser printers used, and the number of hours the are
		operated for, should be minimized. As with printing of
		any kind, office procedures should be developed which
		minimize the need for printing to paper
Laptop	15-40 W	Laptop computer power consumption is typically 10% to
Computer	(during	25% of that of a desktop computer. In situations such as
	operating	an office or home office, where computers may
	condition)	operate for 8 to 10 hours a day, this difference is
		significant and could represent an energy saving of up
		to 1kWh per day.

Table 37 : General Recommendation for Energy Saving in Office Equipment